Summary

In this chapter, we introduced ourselves to one of the very active areas of research in machine learning, namely the field of probabilistic graphical models. These models involve using a graphical structure to encode conditional independence relations between random variables. We saw how Bayes' Theorem, a very simple formula that essentially tells us how we can predicate cause by observing effect, can be used to build a simple classifier known as the Naïve Bayes classifier. This is a simple model where we are trying to predict an output class that best explains a set of observed features, all of which are assumed to be independent of each other given the output class.

We used this model to predict user sentiment on a set of movie reviews ...

Get Mastering Predictive Analytics with R now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.