O'Reilly logo

Mastering Predictive Analytics with R - Second Edition by Rui Miguel Forte, James D. Miller

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Classification metrics

Although we looked at the test set accuracy for our model, we know from Chapter 1, Gearing Up for Predictive Modeling, that the binary confusion matrix can be used to compute a number of other useful performance metrics for our data, such as precision, recall, and the F measure.

We'll compute these for our training set now:

> (confusion_matrix <- table(predicted = train_class_predictions, actual = heart_train$OUTPUT))
         actual
predicted   0   1
        0 118  16
        1  10  86
> (precision <- confusion_matrix[2, 2] / sum(confusion_matrix[2,]))
[1] 0.8958333
> (recall <- confusion_matrix[2, 2] / sum(confusion_matrix[,2]))
[1] 0.8431373
> (f = 2 * precision * recall / (precision + recall))
[1] 0.8686869

Here, we used the trick of bracketing our assignment ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required