O'Reilly logo

Mastering Predictive Analytics with R - Second Edition by Rui Miguel Forte, James D. Miller

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Summary

In this chapter, we introduced ourselves to one of the very active areas of research in machine learning, namely the field of probabilistic graphical models. These models involve using a graphical structure to encode conditional independence relations between random variables. We saw how Bayes' theorem, a very simple formula that essentially tells us how we can predicate cause by observing effect, can be used to build a simple classifier known as the Naïve Bayes classifier. This is a simple model where we are trying to predict an output class that best explains a set of observed features, all of which are assumed to be independent of each other given the output class.

We used this model to predict user sentiment on a set of movie reviews ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required