Skip to Main Content
Mathematical Methods by Pearson
book

Mathematical Methods by Pearson

by E. Rukmangadachari
May 2024
Intermediate to advanced content levelIntermediate to advanced
437 pages
17h 41m
English
Pearson India
Content preview from Mathematical Methods by Pearson
Fill in the Blanks A-45
1
2
11
2cos(21) (1)sin
()
4
(2 1)
n
nn
nx nx
fx
n
n
p
p
∞∞
==
−−
=− +
∑∑
then
222
111
1
357
++++=
_______. Ans:
2
8
p
2. If
2
2
2
1
(1)cos
4
3
n
n
nx
x
n
p
=
=−
in (p, p) then
22 22 2
11111
1
23456
−+−+−+=
_______.
Ans:
2
12
p
3. If
2
22 2
111
1
12
234
p
−+−+=
and
22
11
1
23
+++
2
2
1
6
4
p
+=
then
222 2
111 1
1357
++++=
_______. Ans:
2
8
p
4. If the half-range sine series in (0, p) for
3
1
8sin(21)
() ( )
(2 1)
x
n
n
fx x x
n
p
p
=
=−=
then
333
111
1
357
−+−+=
_______. Ans:
2
32
p
5. If the half-range cosine series in (0, p) for
2
1
24 cos2
() sin
41
n
nx
fx x
n
pp
=
==−
then
1111
1.3 3.5 5.7 7.9
+−+ =
_______. Ans:
1
2
6. If the half-range sine series of e
x
in (0, p) is
22 2
21 2(1) 3
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Applied Mathematical Methods by Pearson

Applied Mathematical Methods by Pearson

Bhaskar Dasgupta
Mathematical Modelling

Mathematical Modelling

Pramod Belkhode, Prashant Maheshwary, Kanchan Borkar, J.P. Modak

Publisher Resources

ISBN: 9781299446557Publisher Website