3Some New Inequalities Via Extended Generalized Fractional Integral Operator for Chebyshev Functional
Bhagwat R. Yewale* and Deepak B. Pachpatte
Department of Mathematics, Dr. B. A. M. University, Aurangabad, Maharashtra, India
Abstract
In present article, we prove some integral inequalities for Chebyshev functional using extended generalized fractional operator. The result obtained in the case of differentiable as well as Lipschitz functions.
Keywords: Chebyshev functional, Integral inequalities, Extended generalized fractional integral operator
3.1 Introduction
In 1882, Chebyshev introduced the following inequality [13]:
Let be differentiable functions such that and
then
The constant is the best possible.
The functional (3.1) have large number of applications in the field of statistics and probability. Many researcher’s provided lot of integral inequalities related to this functional in their literature (see [9, 12, 14, 15]).
Integrals and derivatives of any positive ...
Get Mathematics and Computer Science, Volume 1 now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.