Bibliography

  1. [Alauzet, Frazza-2019] F. ALAUZET AND L. FRAZZA, 3D RANS anisotropic mesh adaptation on the high-lift version of NASA's Common Research Model (HL-CRM), AIAAFLUID25, AIAAP 2019-2947, Dallas, USA, 2019.
  2. [Barth-1992] T. BARTH, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier- Stokes equations, Technical Report 787, AGARD, 1992.
  3. [Barth, Larson-2002] T.J. BARTH AND M.G. LARSON, A posteriori error estimates for higher order Godunov finite volume methods on unstructured meshes, NASA Technical Report, 02-001, 2002.
  4. [Bergot et al. 2010] M. BERGOT, G. COHEN AND M. DURUFLé, Higher-order finite elements for hybrid meshes using new nodal pyramidal elements, Journal of Scientific Computing, 42(3), 345-381, 2010.
  5. [Boissonnat, Yvinec-1997] J.D. BOISSONNAT AND M. YVINEC, Algorithmic Geometry, Cambridge University Press, 1997.
  6. [Carey-1997] G.F. CAREY, Computational Grids Generation, Adaptation and Solution Strategies, Taylor and Francis, 1997.
  7. [Chan, Warburton-2016] J. CHAN AND T. WARBURTON, A short note on a Bernstein-Bezier basis for the pyramid, SIAM Journal on Scientific Computing, 38, A2162-A2172, 2016.
  8. [Cheng et al. 2012] S.-W. CHENG, T.K. DEY AND J.R. SHEWCHUK, Delaunay Mesh Generation, CRC Press, 2012.
  9. [Chevalier, Pellegrini-2008] C. CHEVALIER AND F. PELLEGRINI, PT-Scotch: A tool for efficient parallel graph ordering, J. Parallel Comput., 48(1), 318-331, 2008.
  10. [Ciarlet, Lunéville-2009] P. CIARLET AND E. LUNéVILLE, La méthode des éléments ...

Get Meshing, Geometric Modeling and Numerical Simulation 3 now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.