12 Proofs: Gluing and Whitney Machinery

12.1 Theorem 11.23

We begin with Theorem 11.23.

Proof: Using the Lojasiewicz inequality, (see Chapter 8), there exists a Euclidean motion upper A for which we have

StartAbsoluteValue phi left-parenthesis x right-parenthesis minus upper A left-parenthesis x right-parenthesis EndAbsoluteValue less-than-or-equal-to c Subscript upper K Baseline delta Superscript 1 slash upper C Super Subscript upper K Superscript Baseline comma x element-of upper E period

Without loss of generality, we may replace phi by phi o upper A Superscript negative 1. Hence, we may suppose that

StartAbsoluteValue phi left-parenthesis x right-parenthesis minus x EndAbsoluteValue less-than-or-equal-to upper C prime Subscript upper K Baseline delta Superscript 1 slash upper C Super Subscript k Superscript Baseline comma x element-of upper E period

Now we will employ a similar technique to the proof of Lemma 9.15.

Let theta left-parenthesis y right-parenthesis be a smooth cut off function on double-struck upper R Superscript d such that theta left-parenthesis y right-parenthesis equals 1 for StartAbsoluteValue y EndAbsoluteValue less-than-or-equal-to 1 slash 100, theta left-parenthesis y right-parenthesis equals 0 for and with for all . Then set

The summands are smooth and have pairwise disjoint supports ...

Get Near Extensions and Alignment of Data in R(superscript)n now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.