Skip to Main Content
Nonlinear Filters
book

Nonlinear Filters

by Peyman Setoodeh, Saeid Habibi, Simon Haykin
April 2022
Intermediate to advanced content levelIntermediate to advanced
304 pages
8h 12m
English
Wiley
Content preview from Nonlinear Filters

3Observers

3.1 Introduction

State of a system refers to the minimum amount of information, which is required at the current time instant to uniquely describe the dynamic behavior of the system in the future, given the inputs and parameters. Parameters reflect the physical properties used in a model as a description of the system under study. Inputs or actions are manipulated variables that act on the dynamic system as forcing functions. Outputs or observations are variables that can be directly measured. In many practical situations, the full state of a dynamic system cannot be directly measured. Hence, the current state of the system must be reconstructed from the known inputs and the measured outputs. State estimation is deployed as a process to determine the state from inputs and outputs given a dynamic model of the system. For linear systems, reconstruction of system state can be performed by deploying the well‐established optimal linear estimation theory. However, for nonlinear systems, we need to settle for sub‐optimal methods, which are computationally tractable and can be implemented in real‐time applications. Such methods rely on simplifications of or approximations to the underlying nonlinear system in the presence of uncertainty [9]. In this chapter, starting from deterministic linear state estimation, the stage will be set for nonlinear methods, and then, unknown inputs such as faults and attacks will be discussed. Since state estimators are usually implemented ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Linear Synchronous Motors, 2nd Edition

Linear Synchronous Motors, 2nd Edition

Jacek F. Gieras, Zbigniew J. Piech, Bronislaw Tomczuk
Power Converters and AC Electrical Drives with Linear Neural Networks

Power Converters and AC Electrical Drives with Linear Neural Networks

Maurizio Cirrincione, Marcello Pucci, Gianpaolo Vitale
Multilevel Converters for Industrial Applications

Multilevel Converters for Industrial Applications

Sergio Alberto Gonzalez, Santiago Andres Verne, Maria Ines Valla

Publisher Resources

ISBN: 9781118835814Purchase Link