Finding objects and faces with a cascade of Haar features
We learned in the previous recipe, some of the basic concepts of machine learning. We showed how a classifier can be built by collecting samples of the different classes of interest. However, for the approach that was considered in this previous recipe, training a classifier simply consists of storing all the samples' representations. From there, the label of any new instance can be predicted by looking at the closest (nearest neighbor) labeled point. For most machine learning methods, training is rather an iterative process during which machinery is built by looping over the samples. Performance of the classifier thus produced gradually improves as more samples are presented. Learning ...
Get OpenCV 3 Computer Vision Application Programming Cookbook - Third Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.