Optics in Instruments

Book description

The role of optical instruments is very important and affects all areas of human activity, from scientific analysis (such as spectrometry) to recreation and leisure pursuits like photography and television. Optical components are often an essential part of the instrument, but are not always visible. It is therefore useful and important to understand how they work.

In this book the reader will find both a review of the most important components currently used, the theoretical foundation for their application, and an example of evolution. To do this, we first supply the basic knowledge in optics necessary for the understanding of the instruments: geometrical optics, photometry, colorimetry, image analysis and processing, as well as a short description of the sources used: lamps, lasers and semiconductor sources. Optical systems such as zoom lens under different illuminations are discussed. As a first example of application, the evolution of microscopy, up to the most recent technological progress, are given.

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Preface
  5. Chapter 1: Optics and Instruments
    1. 1.1. Introduction
    2. 1.2. The media and optical communications
    3. 1.3. Instruments for image capture
      1. 1.3.1. Classic image-capture instruments
      2. 1.3.2. Seeing even further
      3. 1.3.3. Seeing and measuring small objects
      4. 1.3.4. Improving the image
    4. 1.4. Optics in industrial processes
      1. 1.4.1. Metrology and production control
      2. 1.4.2. Process control
      3. 1.4.3. Transformation of matter and shaping of materials
    5. 1.5. Optics and the medicine
    6. 1.6. Research
    7. 1.7. The basic components of an instrument
    8. 1.8. Bibliography
  6. Chapter 2: Formation of Images
    1. 2.1. Introduction to optics
    2. 2.2. Study of a centered system under Gaussian conditions
      1. 2.2.1. Main elements of a centered system
      2. 2.2.2. Another form of the Lagrange-Helmoltz relation
      3. 2.2.3. Nodal points
      4. 2.2.4. Relation between the object and image space focal lengths — optical power
      5. 2.2.5. Cartesian and Newtonian equations
      6. 2.2.6. Longitudinal magnification
      7. 2.2.7. Association of centered systems
        1. 2.2.7.1. Optical power of the association
        2. 2.2.7.2. Position of the second principal point H' in relation to H'2
        3. 2.2.7.3. Formulae in object space
        4. 2.2.7.4. Position of the focal points
      8. 2.2.8. Spherical refractive surface
        1. 2.2.8.1. Principal planes
        2. 2.2.8.2. Optical power
        3. 2.2.8.3. Equations for the conjugates
      9. 2.2.9. Lens
    3. 2.3. General facts about optical instruments
      1. 2.3.1. Introduction
      2. 2.3.2. Size of the image
        1. 2.3.2.1. Objective instruments
        2. 2.3.2.2. Subjective instruments
      3. 2.3.3. Field
        1. 2.3.3.1. Aperture stop — pupils
        2. 2.3.3.2. Field stop — windows
      4. 2.3.4. Conclusion
    4. 2.4. Geometric aberrations
      1. 2.4.1. Introduction
      2. 2.4.2. Relation between wavefront aberrations and transverse ray aberrations
      3. 2.4.3. The different types of aberration
      4. 2.4.4. Seidel aberrations
        1. 2.4.4.1. Aberration of sphericity: Ws = b1(x2 + y2)2
        2. 2.4.4.2. Coma: Wc = b2yY (x2 + y2)
        3. 2.4.4.3. Astigmatism: Was = b3y2Y2
        4. 2.4.4.4. Curvature of field: Wcb = b4(x2 + y2)Y2
        5. 2.4.4.5. Distortion: Wd = b5yY3
      5. 2.4.5. Conclusion
    5. 2.5. Chromatic aberrations
      1. 2.5.1. Introduction
      2. 2.5.2. Some definitions
        1. 2.5.2.1. Axial chromatic aberration (ACA)
        2. 2.5.2.2. Lateral chromatic aberration (LCA)
        3. 2.5.2.3. Apparent achromatism — secondary spectrum
      3. 2.5.3. Apparent achromatism of doublets
        1. 2.5.3.1. Non-cemented doublet
        2. 2.5.3.2. Cemented doublet
    6. 2.6. Conclusion
    7. 2.7. Bibliography
  7. Chapter 3: A Revision of Photometry and Radiometry
    1. 3.1. Introduction: the role of photometry and radiometry
    2. 3.2. The main parameters of an optical radiation
      1. 3.2.1. Flux (F)
      2. 3.2.2. Solid angle (Ω)
      3. 3.2.3. Intensity (I)
      4. 3.2.4. Geometric extent (G)
      5. 3.2.5. Radiance (L), exitance (M)
        1. 3.2.5.1. Radiance (L)
        2. 3.2.5.2. Exitance M
      6. 3.2.6. Irradiance E
      7. 3.2.7. Spectrum
      8. 3.2.8. Radiometric units
    3. 3.3. Relations between radiometric parameters of a radiation
      1. 3.3.1. General relations between geometric parameters
        1. 3.3.1.1. Flux and intensity
        2. 3.3.1.2. Flux and radiance
        3. 3.3.1.3. Radiance and intensity
        4. 3.3.1.4. Irradiance (or exitance) of a flat surface from a radiation of radiance L
        5. 3.3.1.5. Irradiance E of a plane from directed illumination of intensity I: Bouguer’s law
      2. 3.3.2. Particular case of radiations with uniform radiance
        1. 3.3.2.1. Definition
        2. 3.3.2.2. Intensity
        3. 3.3.2.3. Flux
        4. 3.3.2.4. Geometric extent of a beam defined by a circular aperture and a cone of revolution
        5. 3.3.2.5. Examples of Lambertian sources
      3. 3.3.3. Relations between energetic, photonic and visual parameters
        1. 3.3.3.1. Relations between energetic and photonic parameters
          1. 3.3.3.1.1. Monochromatic or spectrally narrow radiations
          2. 3.3.3.1.2. Spectrally large radiations
        2. 3.3.3.2. Relations between energetic and visual (or luminous) parameters
          1. 3.3.3.2.1. Relative spectral sensitivity of human vision
        3. 3.3.3.3. Relations in the case of spectrally large radiations
    4. 3.4. Some photometric properties of optical instruments
      1. 3.4.1. Conservation of the geometric extent of a beam in an optical medium and its transfer by an optical interface
      2. 3.4.2. Effects of refraction and reflection on radiance
      3. 3.4.3. A revision of instrumental optics
        1. 3.4.3.1. Diaphragms of an optical system
        2. 3.4.3.2. Hypothesis on optical quality
        3. 3.4.3.3. Numerical aperture and aperture number of an instrument
      4. 3.4.4. Photometry of an imaging system
        1. 3.4.4.1. On-axis radiometry
        2. 3.4.4.2. Off-axis irradiance
      5. 3.4.5. Photometry of a “flux collector” instrument
    5. 3.5. Bibliography
  8. Chapter 4: Light Sources for Optical Instruments
    1. 4.1. Generalities about sources
    2. 4.2. Emission light
      1. 4.2.1. Coherence of sources
      2. 4.2.2. Sources characteristics
      3. 4.2.3. Different types of sources
    3. 4.3. Lamps
      1. 4.3.1. Incandescent lamps
      2. 4.3.2. Halogen lamps
      3. 4.3.3. Luminescent discharge sources
        1. 4.3.3.1. Low-pressure light sources
        2. 4.3.3.2. Hollow cathode lamps
        3. 4.3.3.3. Electrodeless discharge lamps
        4. 4.3.3.4. High-pressure discharge lamps
        5. 4.3.3.5. Flash lamps
        6. 4.3.3.6. DC arc
    4. 4.4. Lasers
      1. 4.4.1. Definition and general characteristics
        1. 4.4.1.1. How a laser works
          1. 4.4.1.1.1. Amplifying medium
          2. 4.4.1.1.2. Pumping method
          3. 4.4.1.1.3. Optical cavity, resonator
        2. 4.4.1.2. Transverse modes
        3. 4.4.1.3. Longitudinal (or axial) modes
        4. 4.4.1.4. Pulsed laser
          1. 4.4.1.4.1. Synchronized mode-locked lasers
          2. 4.4.1.4.2. Relaxed laser
          3. 4.4.1.4.3. Q-switched laser
          4. 4.4.1.4.4. Pulse duration
        5. 4.4.1.5. Tunable laser
      2. 4.4.2. Gas lasers
        1. 4.4.2.1. Neutral atom lasers
        2. 4.4.2.2. Ion lasers
        3. 4.4.2.3. Molecular lasers
        4. 4.4.2.4. Excimer lasers
      3. 4.4.3. Solid-state lasers
      4. 4.4.4. Optical parametric oscillators
      5. 4.4.5. Fiber lasers
        1. 4.4.5.1. Principle
        2. 4.4.5.2. Amplified spontaneous emission (ASE) light sources
        3. 4.4.5.3. White light fiber sources
    5. 4.5. Diodes
      1. 4.5.1. Light-emitting diodes
        1. 4.5.1.1. Inorganic light-emitting diodes
        2. 4.5.1.2. Organic light-emitting diodes: OLEDs
      2. 4.5.2. Laser diodes
        1. 4.5.2.1. Edge-emitting diodes
        2. 4.5.2.2. Quantum cascade lasers
        3. 4.5.2.3. VECSELs (Vertical Cavity Surface Emitting Lasers)
    6. 4.6. Remote sources and optical power supply
    7. 4.7. Bibliography
  9. Chapter 5: Colorimetry
    1. 5.1. Introduction
    2. 5.2. Color and the observer
      1. 5.2.1. The physical stimulus
      2. 5.2.2. The human visual system
    3. 5.3. The foundation of colorimetry
      1. 5.3.1. Tristimulus values
      2. 5.3.2. Chromaticity diagram
    4. 5.4. Perception of color differences
      1. 5.4.1. CIE 1976 L*u*v* color space
      2. 5.4.2. CIE 1976 L*a*b* color space
      3. 5.4.3. The problem of dark colors
    5. 5.5. Evaluation of color differences
      1. 5.5.1. Color deviation equations based on CIE 1976 color spaces
      2. 5.5.2. Notes about CIE 1976 color spaces
      3. 5.5.3. CMC (l:c) color formula
      4. 5.5.4. CIE 1994 formula
      5. 5.5.5. CIE DE2000 total color deviation formula
    6. 5.6. Interpreting color deviations and color tolerancing
    7. 5.7. Conclusion
    8. 5.8. Bibliography
  10. Chapter 6: Bases for Image Analysis
    1. 6.1. Introduction
      1. 6.1.1. What is an image?
      2. 6.1.2. Digitization of the spatial support
      3. 6.1.3. Digitization of gray-scale
    2. 6.2. Classification of the image
      1. 6.2.1. Earliest tools for classification: thresholding, multi-thresholding, contour detection
        1. 6.2.1.1. Maximizing inter-class variance
          1. 6.2.1.1.1. Summary of the method
          2. 6.2.1.1.2. Advantages of the method
          3. 6.2.1.1.3. Drawbacks of the method
        2. 6.2.1.2. Entropy maximization
          1. 6.2.1.2.1. Summary of the method
        3. 6.2.1.3. Classification by dynamic “clouds” or k-means
        4. 6.2.1.4. Köhler method (K method)
          1. 6.2.1.4.1. Summary of the K method
          2. 6.2.1.4.2. Advantages of the method
          3. 6.2.1.4.3. Drawbacks
        5. 6.2.1.5. Conservation of statistical moments method
          1. 6.2.1.5.1. Summary
          2. 6.2.1.5.2. Advantages of the method
          3. 6.2.1.5.3. Drawbacks to the method
        6. 6.2.1.6. Metric method
          1. 6.2.1.6.1. Summary
          2. 6.2.1.6.2. Examples of functional metrics
      2. 6.2.2. Perspectives towards more complex tools
    3. 6.3. Interpretation of binary images
      1. 6.3.1. Measurements
        1. 6.3.1.1. First example: area of a particle
        2. 6.3.1.2. Second example: perimeter of a particle
          1. 6.3.1.2.1. Freeman coding
          2. 6.3.1.2.2. Crofton method
      2. 6.3.2. Parameters of shape
      3. 6.3.3. Binary mathematical morphology
        1. 6.3.3.1. Detection of inverted and prominent areas of an object A
        2. 6.3.3.2. Link with CAM (Computer Aided Manufacturing)
        3. 6.3.3.3. Mathematical morphology and vectorization
        4. 6.3.3.4. Reconstruction by marker or conditional dilation
        5. 6.3.3.5. Evaluation of distances
      4. 6.3.4. Correction of a squared grid
    4. 6.4. Gray level mathematical morphology
    5. 6.5. An example of a non-linear model: the LIP (Logarithmic Image Processing) model [JOU 01]
      1. 6.5.1. Initial physical framework
    6. 6.6. Conclusion
    7. 6.7. Bibliography
  11. Chapter 7: Optics for Imaging: Definition, Manufacturing, Applications
    1. 7.1. Lenses for photography
      1. 7.1.1. Fixed focal length lenses
        1. 7.1.1.1. The simplest lenses
        2. 7.1.1.2. Fundamental types of lenses
      2. 7.1.2. Zoom lenses
    2. 7.2. Lenses for cinema and television
      1. 7.2.1. Cinema
      2. 7.2.2. Television
      3. 7.2.3. Manufacture
    3. 7.3. Optics in astronomy
    4. 7.4. Bibliography
  12. Chapter 8: Optics for Images at Low Light Levels
    1. 8.1. Introduction
      1. 8.1.1. Active imagery
      2. 8.1.2. Low light level passive imagery
      3. 8.1.3. Infrared thermography
    2. 8.2. Light intensification devices
      1. 8.2.1. Different sensor technologies: light intensification tubes
      2. 8.2.2. Different sensors: video-compatible solutions
        1. 8.2.2.1. CCD versus CMOS
        2. 8.2.2.2. Different sensors
      3. 8.2.3. Optics for LLL systems
        1. 8.2.3.1. General architecture
        2. 8.2.3.2. The choice of fields of view for portable applications
        3. 8.2.3.3. The objective
        4. 8.2.3.4. Eyepieces
        5. 8.2.3.5. Accessories
    3. 8.3. A case apart: the SWIR band
      1. 8.3.1. The interest of the SWIR band
      2. 8.3.2. SWIR sensors
      3. 8.3.3. Optics for the SWIR band
    4. 8.4. The 3-5 µm and 8-12 µm bands
      1. 8.4.1. The different types of sensors and the design constraints relating to optics
      2. 8.4.2. Optical materials in the IR band
      3. 8.4.3. Rather special optical components
    5. 8.5. The future
  13. Chapter 9: From the Classic Microscope to the Tunnel Effect Microscope
    1. 9.1. Introduction
    2. 9.2. Towards the limit of resolution. Aspects of the formation of images
      1. 9.2.1. Transfer function
      2. 9.2.2. Transfer function in coherent illumination
      3. 9.2.3. Aberrations
      4. 9.2.4. Transfer function in partially coherent illumination
      5. 9.2.5. Transfer function in incoherent illumination
      6. 9.2.6. Structured illumination, synthetic pupil
    3. 9.3. The confocal microscope
      1. 9.3.1. Coherent confocal microscope
      2. 9.3.2. Incoherent confocal microscope (fluorescence)
      3. 9.3.3. 4Pi synthetic aperture
      4. 9.3.4. Stimulated emission depletion (STED) confocal microscope
    4. 9.4. Adaptive optics
    5. 9.5. Polarized light
    6. 9.6. Phase microscopies
      1. 9.6.1. Absolute interferometric phase-shifting measurements
      2. 9.6.2. Measurements based on a single interferogram
      3. 9.6.3. 3D holographic microscopy
    7. 9.7. Confined light microscopy techniques. Evanescent waves
    8. 9.8. Near-field local probe microscopy
    9. 9.9. Bibliography
    10. 9.10. Glossary of terms used
  14. List of Authors
  15. Index

Product information

  • Title: Optics in Instruments
  • Author(s): Jean Pierre Goure
  • Release date: May 2011
  • Publisher(s): Wiley
  • ISBN: 9781848212435