O'Reilly logo

Optimization Modeling with Spreadsheets, 3rd Edition by Kenneth R. Baker

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

7INTEGER PROGRAMMING: LOGICAL CONSTRAINTS

In the previous chapter, we covered how to solve integer programming problems using Solver. We also introduced the use of binary variables, which represent yes/no decisions, and we saw how binary variables arise naturally in set covering, set packing, and set partitioning. In this chapter, we expand the use of binary variables in connection with relationships we call logical constraints that restrict consideration to certain combinations of variables. Normally, we might not immediately think of these restrictions as linear constraints, but we can capture them in linear form with the use of binary variables.

We begin with the illustration of a counting constraint. This term refers to a quantitative constraint for counting our decisions, and the use of binary variables makes counting easy. As an example, we revisit the capital budgeting problem, which, in its basic form, is a pure integer program containing binary variables and one constraint. We encountered this structure in Example 6.2, in the Newton Corporation.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required