
468
Appendix
}
tot err - 0.0 ; // Total error will be cumulated here
for (tset-0 ; tset<tptr->ntrain ; tset++) { // Do all samples
dptr - tptr->data + size * tset ; // Point to this sample
trial ( dptr ) ; // Evaluate network for it
1f (outmod — 0UTM0D AUTO) { // If this 1s AUTOASSOCIATIVE
for (1-0 ; Knout ; 1++) { // then the expected outputs
d1ff - *dptr++ - outC13 ; // are just the Inputs
tot err ·+- d1ff * d1ff ;
}
}
else 1f (outmod — OUTMOD CLASSIFY) { // If this 1s Classification
tclass - (1nt) dptr[n1n] - 1 ; // class 1s stored after Inputs
for (1-0 ; Knout ; 1++) { // Recall that train added a
1f (tclass — 1) // fraction so that th