Skip to Content
Practical Predictive Analytics
book

Practical Predictive Analytics

by Ralph Winters
June 2017
Beginner to intermediate
576 pages
15h 22m
English
Packt Publishing
Content preview from Practical Predictive Analytics

Summary

In this chapter, we started with a discussion of supervised and unsupervised learning and emphasized the difference between pure predictive and exploratory analytics. We were then introduced to the first of the core algorithms (general linear models) which are important in the predictive analytics world. We then discussed various regression methods, along with its pros and cons, and noted that regression can be an extremely flexible and well researched statistical based modeling tool. We then used a pain threshold study to show examples of logistic regression and regularized regression, along with discussing important regressions concepts such as interaction, p-values and effect sizes.

In the next chapter, we will resume our discussion ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Data Superstream: Analytics Engineering

Data Superstream: Analytics Engineering

Alistair Croll, Anna Filippova, Emilie Schario, Lewis Davies, Jacob Frackson, Benn Stancil, Nick Acosta, Elizabeth Caley
R: Predictive Analysis

R: Predictive Analysis

Tony Fischetti, Eric Mayor, Rui Miguel Forte
Python: Advanced Predictive Analytics

Python: Advanced Predictive Analytics

Ashish Kumar, Joseph Babcock

Publisher Resources

ISBN: 9781785886188Supplemental Content