Skip to Content
Practical Predictive Analytics
book

Practical Predictive Analytics

by Ralph Winters
June 2017
Beginner to intermediate
576 pages
15h 22m
English
Packt Publishing
Content preview from Practical Predictive Analytics

Automating the regressions

Now that we have seen how we can run a single time series regression, we can move on to automating separate regressions and extracting the coefficients over all of the categories.

There are several ways to do this. One way is by using the do() function within the dplyr package. Here is the sequence of events:

  • The data is first grouped by category.
  • Then, a linear regression (lm() function) is run for each category, with Year as the independent variable, and Not.Covered as the dependent variable. This is all wrapped within a do() function.
  • The coefficient is extracted from the model. The coefficient will act as a proxy for the direction and magnitude of the trend.
  • Finally, a dataframe of lists is created (fitted.models ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Data Superstream: Analytics Engineering

Data Superstream: Analytics Engineering

Alistair Croll, Anna Filippova, Emilie Schario, Lewis Davies, Jacob Frackson, Benn Stancil, Nick Acosta, Elizabeth Caley
R: Predictive Analysis

R: Predictive Analysis

Tony Fischetti, Eric Mayor, Rui Miguel Forte
Python: Advanced Predictive Analytics

Python: Advanced Predictive Analytics

Ashish Kumar, Joseph Babcock

Publisher Resources

ISBN: 9781785886188Supplemental Content