Video description
Learn practical solutions to Data Science problems with Python
About This Video
Easy to follow guide that will take you from being a beginner to a regular data science task.
Get solutions to your common and not-so-common data science problems.
Highly Practical, real world examples that make data science your comfort zone.
In Detail
Data Science is an interdisciplinary field that employs techniques to extract knowledge from data. As one of the fast growing fields in technology, the interest for Data Science is booming, and the demand for specialized talent is on the rise.
This course takes a practical approach to Data Science, presenting solutions for common and not-so-common problems in the form of recipes. This video will begin from exploring your data using the different methods like data acquisition, data cleaning, data mining, machine learning, and data visualization, applied to a variety of different data types like structured data or free-form text. It will show how to deal with text using different methods like text normalization and calculating word frequencies. The audience will learn how to deal with data with a time dimension and how to build a recommendation system as well as about supervised learning problems (regression and classification) and unsupervised learning problems (clustering). They will learn how to perform text preprocessing steps that are necessary for every text analysis applications. Specifically, the course will cover tokenization, stop-word removal, stemming and other preprocessing techniques.
The video takes you through with machine learning problems that you may encounter in your everyday use. In the end, the video will cover the time series and recommender system. By the end of the video course, you will become an expert in Data Science Techniques using Python.
Table of contents
-
Chapter 1 : Exploring Your Data
- The Course Overview 00:08:35
- Loading Data into Python 00:09:22
- A New Data Set – Exploratory Analysis 00:11:08
- Getting Data in the Right Shape – Preprocessing and Cleaning 00:10:18
-
Chapter 2 : Dealing with Text
- Tokenization – From Documents to Words 00:11:25
- Stop-Words and Punctuation Removal 00:11:09
- Text Normalization 00:08:27
- Calculating Word Frequencies 00:09:07
- Chapter 3 : Machine Learning Problems
-
Chapter 4 : Time Series and Recommender Systems
- Time Series Analysis with Pandas 00:11:27
- Building a Movie Recommendation System 00:19:11
Product information
- Title: Practical Python Data Science Techniques
- Author(s):
- Release date: August 2017
- Publisher(s): Packt Publishing
- ISBN: 9781788294294
You might also like
video
Data Science and Machine Learning with Python - Hands On!
Perform data mining and Machine Learning efficiently using Python and Spark About This Video Take your …
book
Python Data Science Essentials - Third Edition
Gain useful insights from your data using popular data science tools Key Features A one-stop guide …
book
Pandas 1.x Cookbook
Use the power of pandas to solve most complex scientific computing problems with ease. Revised for …
video
Statistics for Data Science and Business Analysis
Statistics you need in the office: Descriptive and inferential statistics, hypothesis testing, and regression analysis About …