Video description
5 Hours of Video Instruction
Learn how to use Pandas and Python to load and transform tabular data and perform your own analyses.
Overview
In Programming with Data: Python and Pandas LiveLessons, data scientist Daniel Gerlanc prepares learners who have no experience working with tabular data to perform their own analyses. The video course focuses on both the distinguishing features of Pandas and the commonalities Pandas shares with other data analysis environments.
In this LiveLesson, Dan starts by introducing univariate and multivariate data structures in Pandas and describes how to understand them both in the context of the Pandas framework and in relation to other libraries and environments for tabular data like R and relational databases. Next, Dan covers reading and writing to external file formats, split-apply-combine computations, introductory and advanced time series, and merging and reshaping datasets. After watching this video, Python programmers will gain a deep understanding of the Pandas framework through exposures to all of its APIs and feature sets.
Skill Level
- Beginner
- Intermediate
Learn How To
- Avoid common pitfalls and “gotchas” in Pandas by understanding the conceptual underpinnings common to most data manipulation libraries and environments
- Create univariate (Series) and multivariate (DataFrame) data structures in Pandas
- Read from and write to external data sources like text and binary files and databases
- Use the Split-Apply-Combine technique to calculate grouped summary statistics like mean, median, and standard deviation on your data
- Handle time series data; apply lead, lag, and rolling computations to them; and interpolate missing data
- Merge and reshape datasets
- Understand how data alignment is a central concept of Pandas
Who Should Take This Course
- People with a solid understanding of Python programming who want to learn how to load and transform tabular data using Pandas and understand general principles and requirements common to tabular data manipulation frameworks
Course Requirements
- Intermediate-level programming ability in Python. You should know the difference between a dict, list, and tuple. Familiarity with control-flow (if/else/for/while) and error handling (try/catch) are required.
- No statistics background is required.
About Pearson Video Training
Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Prentice Hall, Sams, and Que Topics include: IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.
Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.
Table of contents
Product information
- Title: Programming with Data: Python and Pandas LiveLessons
- Author(s):
- Release date: February 2020
- Publisher(s): Pearson
- ISBN: 0136623759
You might also like
video
Pandas Data Cleaning and Modeling with Python
The perfect follow up to Pandas Data Analysis with Python Fundamentals LiveLessons for the aspiring data …
video
Pandas Data Analysis with Python Fundamentals
3+ Hours of Video Instruction provides analysts and aspiring data scientists with a practical introduction to …
video
Data Manipulation in Python - Master Python, NumPy, and Pandas
Data science is quickly becoming one of the most promising careers in the twenty-first century. It …
video
Data Analysis with Pandas and Python
Data Analysis with Pandas and Python introduces you to the popular Pandas library built on top …