Anhang B. BSM Option Class

Klasse Definition

Die folgende präsentiert eine Klassendefinition für eine europäische Kaufoption im Black-Scholes-Merton-Modell (1973). Die klassenbasierte Implementierung ist eine Alternative zu der auf Funktionen basierenden Implementierung, die in "Python Script" vorgestellt wird :

#
# Valuation of European call options in Black-Scholes-Merton model
# incl. vega function and implied volatility estimation
# -- class-based implementation
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
from math import log, sqrt, exp
from scipy import stats


class bsm_call_option(object):
    ''' Class for European call options in BSM model.

    Attributes
    ==========
    S0: float
        initial stock/index level
    K: float
        strike price
    T: float
        maturity (in year fractions)
    r: float
        constant risk-free short rate
    sigma: float
        volatility factor in diffusion term

    Methods
    =======
    value: float
        returns the present value of call option
    vega: float
        returns the vega of call option
    imp_vol: float
        returns the implied volatility given option quote
    '''

    def __init__(self, S0, K, T, r, sigma):
        self.S0 = float(S0)
        self.K = K
        self.T = T
        self.r = r
        self.sigma = sigma

    def value(self):
        ''' Returns option value.
        '''
        d1 = ((log(self.S0 / self.K) +
               (self.r + 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        d2 = ((log(self.S0 / self.K) +
               (self.r - 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        value = (self.S0 * stats.norm.cdf(d1, 0.0, 1.0) -

Get Python für Finanzen, 2. Auflage now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.