© B.J. Korites 2018
B.J. KoritesPython Graphicshttps://doi.org/10.1007/978-1-4842-3378-8_12

Planck’s Radiation Law and the Stefan-Boltzmann Equation

B. J. Korites1 
(1)
Duxbury, Massachusetts, USA
 
In Chapter 10, you were introduced to Max Planck’s famous equation of black body radiation:
$$ S\left(\uplambda \right)=\frac{2\pi {c}^2h}{\uplambda^5}\frac{\varepsilon }{e^{\frac{hc}{\lambda kT}}-1}\kern0.5em J/s/{m}^3=W/{m}^3 $$
(B-1)
The power emitted by a surface over a bandwidth λ1λ2 is
$$ {P}_{\uplambda_1\to {\uplambda}_2}=\underset{\uplambda_1}{\overset{\uplambda_2}{\int }}S\left(\uplambda \right)d\uplambda \kern1em J/s/{m}^2=W/{m}^2 $$
(B-2)
With Equation B-1, this becomes
$$ {P}_{\uplambda_1\to {\uplambda}_2}=2\pi {c}^2h{\int}_{\uplambda_1}^{\uplambda_2}\frac{\uplambda^{-5}\varepsilon }{e^{\frac{hc}{\uplambda kT}}-1}d\uplambda \kern1.2em J/s/{m}^2=W/{m}^2 $$
(B-3)
In Chapter 10, you numerically integrated Equation B-3. Here you ...

Get Python Graphics: A Reference for Creating 2D and 3D Images now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.