Skip to Main Content
Python 机器学习实践:测试驱动的开发方法
book

Python 机器学习实践:测试驱动的开发方法

by Matthew Kirk
January 2018
Intermediate to advanced content levelIntermediate to advanced
211 pages
8h 31m
Chinese
China Machine Press
Content preview from Python 机器学习实践:测试驱动的开发方法
48
4
也就是说,我们要解决
P
(
A
B,C
) = ?
的问题。
为此,我们需要更多的信息,以及
被称为链式法则的工具。
链式法则
如果你回想一下概率的类别,也许你会想到,
A
B
发生的概率等于给定
A
的条件
B
发生的概率乘以
A
发生的概率。用数学语言表达,看起来是这样:
P
(
A
B
) =
P
(
B
|
A
)
P
(
A
)
。假设这些事件不是互斥的。使用被称为联合概率的概念,这个更小的
结果就转变成了链式法则。
联合概率是所有事件将同时发生的概率。我们用∩来表示。链式法则的一般情况是:
公式
4-4
:链式法则
Naive Bayesian Classier
We’ve already solved the problem of finding fraudulent orders given that a gift card
was used, but what about the problem of fraudulent orders given the fact that they
have gift cards, or multiple promo codes, or other features? How would we go about
that?
Namely, we want to solve the problem of P
A B, C =?. For this, we need a bit more
information and something called the chain ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Python for Bioinformatics

Mastering Python for Bioinformatics

Ken Youens-Clark

Publisher Resources

ISBN: 9787111581666