Skip to Main Content
Python Machine Learning By Example
book

Python Machine Learning By Example

by Yuxi (Hayden) Liu, Ivan Idris
May 2017
Beginner to intermediate content levelBeginner to intermediate
254 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning By Example

Visualization

It's good to visualize to get a general idea of how the data is structured, what possible issues may arise, and if there are any irregularities that we have to take care of.

In the context of multiple topics or categories, it is important to know what the distribution of topics is. A uniform class distribution is the easiest to deal with because there are no under-represented or over-represented categories. However, we frequently have a skewed distribution with one or more categories dominating. We herein use the seaborn package (https://seaborn.pydata.org/) to compute the histogram of categories and plot it utilizing the matplotlib package (https://matplotlib.org/). We can install both packages via pip. Now let’s display the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python: Deeper Insights into Machine Learning

Python: Deeper Insights into Machine Learning

Sebastian Raschka, David Julian, John Hearty
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781783553112Supplemental Content