Book description
『Pythonによるファイナンス 第2版』の著者が、アルゴリズムトレードを始める上で必要な自動売買の基礎と、機械学習を本格的に導入するために必要なPythonの知識について解説します。具体的には、アルゴリズムトレード用の適切なPython環境の設定、データの取得、NumPy/pandasを使ったデータ分析、トレード戦略のバックテスト、市場予測、ストリーミングのリアルタイム処理等、アルゴリズムトレードのさまざまな側面にPythonを適用するさまざまな手法を紹介し、自動トレード戦略を効率よく構築、デプロイするために、どのような選択肢があるのかを提示します。本書で利用したサンプルコードはGitHubから利用可能です。
Table of contents
- 大扉
- 原書大扉
- クレジット
- まえがき
- 1章 Pythonとアルゴリズムトレード
- 2章 Pythonインフラストラクチャ
- 3章 金融データの処理
- 4章 ベクトル化バックテストの習得
- 5章 機械学習を用いたマーケットの動きの予測
- 6章 イベントベース・バックテストのためのクラスの作成
- 7章 リアルタイムデータとソケットを扱う
- 8章 OandaでのCFDトレード
- 9章 FXCMでのFXトレード
- 10章 トレードオペレーションの自動化
- 付録A Python、NumPy、Matplotlib、pandas
- 著者・訳者紹介
- 奥付
Product information
- Title: Pythonからはじめるアルゴリズムトレード ―自動売買の基礎と機械学習の本格導入に向けたPythonプログラミング
- Author(s):
- Release date: April 2022
- Publisher(s): O'Reilly Japan, Inc.
- ISBN: 9784873119793
You might also like
book
初めてのGraphQL ―Webサービスを作って学ぶ新世代API
今日では多くのWebサービスがRESTアーキテクチャスタイルで実装されています。RESTは2000年にフィールディングの論文で提唱された後に爆発的に普及し洗練されてきました。一方で、本書で紹介するGraphQLは2015年にFacebookによって公開されたRESTとは異なるアプローチのアーキテクチャです。GraphQLの最大の特徴はクエリ言語を用いてデータを操作する点です。クエリ言語の表現力の高さによりクライアントは本当に必要なリクエストを送ることができます。本書ではGraphQLの概要とGraphQLを用いたWebサービスの開発方法を実装例に沿って紹介します。認証やファイルアップロードといった実践的なトピックまで踏み込んだGraphQLの実用的な入門書です。
book
Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
Pythonの機械学習用ライブラリの定番、scikit-learnのリリースマネージャを務めるなど開発に深く関わる著者が、scikit-learnを使った機械学習の方法を、ステップバイステップで解説します。ニューラルネットを学ぶ前に習得しておきたい機械学習の基礎をおさえるとともに、優れた機械学習システムを実装し精度の高い予測モデルを構築する上で重要となる「特徴量エンジニアリング」と「モデルの評価と改善」について多くのページを割くなど、従来の機械学習の解説書にはない特長を備えています。
book
行動を変えるデザイン ―心理学と行動経済学をプロダクトデザインに活用する
深津貴之氏推薦!「行動経済学、データ分析、サービス設計のエッセンスが高度に統合された行動変容デザインの良書です」 本書は、行動経済学と心理学をもとに、人々の行動、日常習慣を変える“行動変容”を促すプロダクトをデザインするための書籍です。主にヘルスケア(健康管理)、金融(資産管理)など、これまでITプロダクト(サービス、アプリなど)がなかなか使われてこなかった分野を対象に、ユーザーがやりたいと思っていたものの実行できなかった行動の実現を助けるプロダクトを作り出すための、実践的な視点や知識を提供します。
book
大規模データ管理 ―エンタープライズアーキテクチャのベストプラクティス
データ管理と統合が急速に進化する中、複雑で緊密に結合したアーキテクチャから、現代のビジネスに対応できる、より柔軟なデータアーキテクチャへの移行が求められます。 本書は、変化が激しい時代でも長期的に持続可能な方法で大規模なデータ管理を行い、さまざまなユースケースに対応できる統合アーキテクチャを紹介します。この統合アーキテクチャを構成する、膨大なデータ利用に向けた「読み出し専用データストアアーキテクチャ」、リアルタイムなアプリケーションのための「APIアーキテクチャ」、大容量のスループットを実現する「ストリーミングアーキテクチャ」を詳述します。また技術開発、法規制、プライバシーに関する懸念など、データ管理全体を説明し、データガバナンスとセキュリティ、マスターデータ管理、セルフサービスとデータマーケットプレイス、メタデータの重要性について解説します。 企業のデータ戦略にかかわる本書は、アーキテクトはもちろん、経営者、ガバナンスチーム、データ分析・エンジニアリングチーム必携の一冊です。