1. J. Y. Campbell, A. W. Lo, and A. C. MacKinlay, The Econometrics of
Financial Markets, Princeton University Press, 1997.
2. W. H. Green, Econometric Analysis, Prentice Hall, 1998.
3. S. R. Pliska, Introduction to Mathematical Finance: Discrete Time
Models, Blackwell, 1997.
4. S. M. Ross, Elementary Introduction to Mathematical Finance: Options
and Other Topics, Cambridge Un iversity Press, 2002.
5. R. N. Mantegna and H. E. Stanley, An Introduction in Econophysics: Cor-
relations and Complexity in Finance, Cambridge University Press, 2000.
6. J. P. Bouchaud and M. Potters, Theory of Financial Risks: From Statis-
tical Physics to Risk Management, Cambridge University Press, 2000.
7. M. Levy, H. Levy, and S. Solomon, The Microscopic Simulation of
Financial Markets: From Investor Behavior to Market Phenomena, Aca-
demic Press, 2000.
8. K. Ilinski, Physics of Finance: Gauge Modeling in Non-Equilibrium
Pricing, Wiley, 2001.
9. J. Voit, Statistical Mechanics of Financial Markets, Springer, 2003.
10. D. Sornette, Why Stock Markets Crash: Critical Events in Complex
Financial Systems , Princeton University Press, 2003.
11. S. Da Silva (Ed), The Physics of the Open Economy, Nova Science, 2005.
12. B. LeBaron, ‘‘Agent-Based Computational Finance: Suggested Read-
ings and Early Research,’’ Journal of Economic Dynamics and Control
24, 679–702 (2000).
13. M. Jackson and M. Staunton, Advanced Modeling in Finance Using
Excel and VBA, Wiley, 2001.
1. C. Alexander, Market Models: A Guide to Financial Data Analysis,
Wiley, 2001.
2. M. M. Dacorogna, R. Gencay, U. Muller, R. B. Olsen, and O. V. Pictet,
An Introduction to High-Frequency Finance, Academic Press, 2001.
3. See [1.1].
4. T. Lux and D. Sornett e: ‘‘On Rational Bubbles and Fat Tails,’’ Journal
of Money, Credit, and Banking 34, 589-610 (2002).
5. R. C. Merton, Continuous Time Finance, Blackwell, 1990.
6. Z. Bodie and R. C. Merton, Finance, Prentice Hall, 1998.
7. R. Edwards and J. Magee, Technical Analysis of Stock Trends, 8
AMACOM, 2001.
8. S. Cottle, R. F. Murray, and F. E. Block, Security Analysis, McGraw-
Hill, 1988.
9. B. G. Malkiel, A Random Walk Down Wall Street, Norton, 2003.
10. R. J. Shiller, Irrational Exuberance, Princeton University Press, 2000.
11. E. Peters, Chaos and Order in Capital Markets, Wiley, 1996.
12. A. W. Lo and A. C. MacKinlay, A Non-Random Walk Down Wall
Street, Princeton University Press, 1999.
13. See [1.9].
14. D. Kahneman and A. Tversky (Eds.), Choices, Values and Frames,
Cambridge Unive rsity Press, 2000.
15. R. H. Thaler (Ed), Advances in Behavioral Finance, Russell Sage Foun-
dation, 1993.
16. D.Kahneman andA. Tversky: ‘‘Prospect Theory:An Analysis ofDecision
Under Risk,’’ Econometrica 47, 263-291 (1979). See also [14], pp. 17–43.
17. M. A. H. Dempster and C. M. Jones: ‘‘Can Technical Pattern Trading
Be Profitably Automated? 1. The Channel; 2. The Head and Shoulders,
Working Papers, The Judge Institute of Management Studies, Univer-
sity of Cambridge, November and December, 1999.
18. A. W. Lo, H. Mamaysky, and J. Wang: ‘‘Foundations of Technical
Analysis: Computational Algorithms, Statistical Inference, and Empir-
ical Implement ation,’’ NBER Working Paper W7613, 2000.
19. B. LeBar on: ‘‘Technical Trading Profitability in Foreign Exchange
Markets in the 1990s,’’ Working Paper, Brandeis University, 2000.
20. R. Clow: ‘‘Arbitrage Stung by More Efficient Market,’’ Financial Times
April 21, 2002.
150 References
1. W. Feller, An Introduction to Probability Theory and Its Applications,
Wiley, 1968.
2. See [1.5].
3. See [1.6].
4. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wetterling,
Numerical Recipes: Art of Scientific Program ming, Cambridge Univer-
sity Press, 1992.
5. P. Embrechts, C. Klupperberg, and T. Mikosch, Modeling External
Events for Insurance and Finance, Springer, 1997.
6. J. P. Nolan, Stable Distributions, Springer-Verlag, 2002.
7. B. B. Mandelbrot, Fractals and Scaling in Finance, Springer-Verlag,
8. See [1.9].
1. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemis-
try, and the Natural Sciences, Springer-Verlag, 1997.
2. S. N. Neftci, An Introduction to the Mathematics of Financial Derivatives,
Ed., Academic Press, 1996.
3. See [1.1].
4. E. Scalas, R. Gorenflo, and F. Mainardi, ‘‘Fractional Calculus and
Continuous-time Finance,’’ Physica A284, 376–384, (2000).
5. J. Masoliver, M. Montero, and G. H. Weiss, ‘‘A Continuous Time
Random Walk Model for Financial Distributions,’’ Physical Review
E67, 21112–21121 (2003).
6. W. Horsthemke and R. Lefevr, Noise-Induced Transitions. Theory and
Applications in Physics, Chemistry, and Biology, Springer-Verlag, 1984.
7. B. Oksendal: Stochastic Differential Equations, An Introduction with
Applications, Springer-Verlag, 2000.
8. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,
Springer-Verlag, 1997.
1. P. H. Franses, Time Series Models for Business and Economic Forecast-
ing, Cambridge University Press, 1998.
2. J. D. Hamilton, Time Series Analysis, Princeton University Press, 1994.
References 151

Get Quantitative Finance for Physicists now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.