O'Reilly logo

Recursion Theory by Liang Yu, Chi Tat Chong

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

6 Set theory

This chapter reviews results in set theory that have recursion-theoretic applications. Some of these will be stated without proof for future reference.

6.1 Set-theoretic forcing

The technique of forcing was discussed in the context of recursion theory in Chapter 5. The original version of the method as presented in Cohen [18] was very similar to that developed in § 5.2. Here we follow the approach of unramified forcing introduced by Shoenfield [130] (see Kunen [78] for an excellent exposition of the subject).

6.1.1 Forcing and genericity

Let M = 〈M, ∈〉 be a countable transitive model of ZFC and let ℙ = 〈P, ≤〉 be a partial ordering in M. An element pP is called a condition. Given two conditions p, qP, we say that q is stronger ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required