O'Reilly logo

Recursion Theory by Liang Yu, Chi Tat Chong

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

9 Independence results in recursion theory

9.1 Independent sets of Turing degrees

9.1.1 Locally countable partial ordering

Definition 9.1.1. A partially ordered set 〈P, ≤P〉 is locally countable if for any pP, |{q | qP p}| ≤ ℵ0.

Definition 9.1.2. A function f : 〈P, ≤P〉 → 〈Q, ≤Q〉 is an embedding if (∀p0, p1P) (p0p1f(p0) ≤Q f(p1)).

Obviously 〈image, ≤T〉, the partial ordering of the Turing degrees, is locally countable. Sacks made the following conjecture.

Conjecture 9.1.3 (Sacks [117]). Every locally countable partial ordering on 2ω is embeddable into 〈, ≤T〉.

A positive solution is known assuming the Continuum Hypothesis:

Theorem 9.1.4.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required