9 Independence results in recursion theory

9.1 Independent sets of Turing degrees

9.1.1 Locally countable partial ordering

Definition 9.1.1. A partially ordered set 〈P, ≤P〉 is locally countable if for any pP, |{q | qP p}| ≤ ℵ0.

Definition 9.1.2. A function f : 〈P, ≤P〉 → 〈Q, ≤Q〉 is an embedding if (∀p0, p1P) (p0p1f(p0) ≤Q f(p1)).

Obviously 〈image, ≤T〉, the partial ordering of the Turing degrees, is locally countable. Sacks made the following conjecture.

Conjecture 9.1.3 (Sacks [117]). Every locally countable partial ordering on 2ω is embeddable into 〈, ≤T〉.

A positive solution is known assuming the Continuum Hypothesis:

Theorem 9.1.4.

Get Recursion Theory now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.