Renewable Energy Systems

Book description

Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems—including wind turbine and solar panel energy systems.

Learn Cutting-Edge Techniques for Converters and Inverters

Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200 topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters.

Resolve Historic Problems in Conversion Technologies

Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new series—laddered multilevel inverters—that uses few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications.

Tap the Knowledge of Pioneers in the Field

This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems.

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface
  7. Author
  8. Chapter 1 Introduction
    1. 1.1 Stars in the Universe
    2. 1.2 Our Mercury Galaxy, Nebulae, and Black Hole
    3. 1.3 Redshift and Big Bang
    4. 1.4 Solar System
    5. 1.5 The Earth
      1. 1.5.1 The Earth Is Round
      2. 1.5.2 Revolution and Rotation
      3. 1.5.3 The Earth Is a Planet in the Solar System
      4. 1.5.4 Layers of the Earth
      5. 1.5.5 Chemical Composition of the Earth’s Crust
      6. 1.5.6 Water on the Earth
      7. 1.5.7 Plates
      8. 1.5.8 The Earth Is Very Fragile
      9. 1.5.9 The Earth’s Geological Age
      10. 1.5.10 Protection of the Earth
    6. References
  9. Chapter 2 New Energy Sources
    1. 2.1 Nuclear Fission
      1. 2.1.1 Fission Process
      2. 2.1.2 Chain Reactions
    2. 2.2 Nuclear Fusion
      1. 2.2.1 Fusion Process
      2. 2.2.2 Hydrogen
      3. 2.2.3 Fusion Reactions
      4. 2.2.4 Hot Fusion
    3. 2.3 Capture of Neutrino
      1. 2.3.1 Neutrino
      2. 2.3.2 Neutrino Sources
        1. 2.3.2.1 Artificial
        2. 2.3.2.2 Geological
        3. 2.3.2.3 Atmospheric
        4. 2.3.2.4 Solar
        5. 2.3.2.5 By Supernovae
        6. 2.3.2.6 By Supernova Remnants
        7. 2.3.2.7 By the Big Bang
      3. 2.3.3 Neutrino Detection
    4. 2.4 Conclusion
    5. References
  10. Chapter 3 3G and Renewable Energies
    1. 3.1 Distributed Generation
      1. 3.1.1 Economies of Scale
      2. 3.1.2 Localized Generation
      3. 3.1.3 Distributed Energy Resources
      4. 3.1.4 Cost Factors
    2. 3.2 Microgrid
    3. 3.3 Smart Grid
    4. 3.4 Solar Energy
    5. 3.5 Renewable Energy
    6. References
  11. Chapter 4 Power Electronics
    1. 4.1 Symbols and Factors Used in This Book
      1. 4.1.1 Symbols Used in Power Systems
        1. 4.1.1.1 Summary of the Symbols
      2. 4.1.2 Factors and Symbols Used in AC Power Systems
        1. 4.1.2.1 Summary of the Symbols
      3. 4.1.3 Factors and Symbols Used in DC Power Systems
        1. 4.1.3.1 Summary of the Symbols
      4. 4.1.4 Factors and Symbols Used in Switching Power Systems
        1. 4.1.4.1 Summary of the Symbols
      5. 4.1.5 Other Factors and Symbols
        1. 4.1.5.1 Very Small Damping Time Constant
        2. 4.1.5.2 Small Damping Time Constant
        3. 4.1.5.3 Critical Damping Time Constant
        4. 4.1.5.4 Large Damping Time Constant
      6. 4.1.6 Fast Fourier Transform
        1. 4.1.6.1 Central Symmetrical Periodical Function
        2. 4.1.6.2 Axial (Mirror) Symmetrical Periodical Function
        3. 4.1.6.3 Nonperiodical Function
        4. 4.1.6.4 Useful Formulae and Data
        5. 4.1.6.5 Examples of FFT Applications
    2. 4.2 AC/DC Rectifiers
      1. 4.2.1 Historic Problems
      2. 4.2.2 Updated Circuits
      3. 4.2.3 Power Factor Correction Methods
    3. 4.3 DC/DC Converters
      1. 4.3.1 Updated Converter
      2. 4.3.2 New Concepts and Mathematical Modeling
      3. 4.3.3 Power Rate Checking
    4. 4.4 DC/AC Inverters
      1. 4.4.1 Sorting Existing Inverters
      2. 4.4.2 Updated Circuits
      3. 4.4.3 Soft Switching Methods
    5. 4.5 AC/AC Converters
    6. 4.6 AC/DC/AC and DC/AC/DC Converters
    7. References
  12. Chapter 5 Uncontrolled AC/DC Converters
    1. 5.1 Introduction
    2. 5.2 Single-Phase Half-Wave Converters
      1. 5.2.1 R Load
      2. 5.2.2 R–L Load
        1. 5.2.2.1 Graphical Method
        2. 5.2.2.2 Iterative Method
        3. 5.2.2.3 Iterative Method 2
      3. 5.2.3 R–L Circuit with Freewheeling Diode
      4. 5.2.4 An R–L Load Circuit with a Back emf
        1. 5.2.4.1 Negligible Load-Circuit Inductance
      5. 5.2.5 Single-Phase Half-Wave Rectifier with a Capacitive Filter
    3. 5.3 Single-Phase Full-Wave Converters
      1. 5.3.1 R Load
      2. 5.3.2 R–C Load
      3. 5.3.3 R–L Load
    4. 5.4 Three-Phase Half-Wave Converters
      1. 5.4.1 R Load
      2. 5.4.2 R–L Load
    5. 5.5 Six-Phase Half-Wave Converters
      1. 5.5.1 Six-Phase with Neutral Line Circuit
      2. 5.5.2 Double Antistar with Balance-Choke Circuit
    6. 5.6 Three-Phase Full-Wave Converters
    7. 5.7 Multiphase Full-Wave Converters
      1. 5.7.1 Six-Phase Full-Wave Diode Rectifiers
      2. 5.7.2 Six-Phase Double-Bridge Full-Wave Diode Rectifiers
      3. 5.7.3 Six-Phase Double-Transformer Double-Bridge Full-Wave Diode Rectifiers
      4. 5.7.4 Six-Phase Triple-Transformer Double-Bridge Full-Wave Diode Rectifiers
    8. References
  13. Chapter 6 Controlled AC/DC Converters
    1. 6.1 Introduction
    2. 6.2 Single-Phase Half-Wave Controlled Converters
      1. 6.2.1 R Load
      2. 6.2.2 R–L Load
      3. 6.2.3 R–L Load Plus Back emf Vc
    3. 6.3 Single-Phase Full-Wave Controlled Converters
      1. 6.3.1 α > ϕ, Discontinuous Load Current
      2. 6.3.2 α = ϕ, Verge of Continuous Load Current
      3. 6.3.3 α < ϕ, Continuous Load Current
    4. 6.4 Three-Phase Half-Wave Controlled Rectifiers
      1. 6.4.1 An R Load Circuit
      2. 6.4.2 An R–L Load Circuit
    5. 6.5 Six-Phase Half-Wave Controlled Rectifiers
      1. 6.5.1 Six-Phase with Neutral Line Circuit
      2. 6.5.2 Double Antistar with Balance-Choke Circuit
    6. 6.6 Three-Phase Full-Wave Controlled Converters
    7. 6.7 Multi-Phase Full-Wave Controlled Converters
    8. 6.8 Effect of Line Inductance on Output Voltage (Overlap)
    9. References
  14. Chapter 7 Power Factor Correction Implementing in AC/DC Converters
    1. 7.1 Introduction
    2. 7.2 DC/DC Converterized Rectifiers
    3. 7.3 PWM Boost-Type Rectifiers
      1. 7.3.1 DC-Side PWM Boost-Type Rectifier
        1. 7.3.1.1 Constant-Frequency Control
        2. 7.3.1.2 Constant-Tolerance-Band (Hysteresis) Control
      2. 7.3.2 Source-Side PWM Boost-Type Rectifiers
    4. 7.4 Tapped-Transformer Converters
    5. 7.5 Single-Stage Power Factor Correction AC/DC Converters
      1. 7.5.1 Operating Principles
      2. 7.5.2 Mathematical Model Derivation
        1. 7.5.2.1 Averaged Model over One Switching Period TS
        2. 7.5.2.2 Averaged Model over One Half Line Period TL
      3. 7.5.3 Simulation Results
      4. 7.5.4 Experimental Results
    6. 7.6 VIENNA Rectifiers
      1. 7.6.1 Circuit Analysis and Principle of Operation
      2. 7.6.2 Proposed Control Arithmetic
      3. 7.6.3 Block Diagram of the Proposed Controller for VIENNA Rectifier
      4. 7.6.4 Converter Design and Simulation Result
      5. 7.6.5 Experimental Results
    7. References
  15. Chapter 8 Classical DC/DC Converters
    1. 8.1 Introduction
    2. 8.2 Fundamental Converters
      1. 8.2.1 Buck Converter
        1. 8.2.1.1 Voltage Relations
        2. 8.2.1.2 Circuit Currents
        3. 8.2.1.3 Continuous Current Condition (Continuous Conduction Mode)
        4. 8.2.1.4 Capacitor Voltage Ripple
      2. 8.2.2 Boost Converter
        1. 8.2.2.1 Voltage Relations
        2. 8.2.2.2 Circuit Currents
        3. 8.2.2.3 Continuous Current Condition
        4. 8.2.2.4 Output Voltage Ripple
      3. 8.2.3 Buck-Boost Converter
        1. 8.2.3.1 Voltage and Current Relations
        2. 8.2.3.2 CCM Operation and Circuit Currents
    3. 8.3 Positive Output Buck-Boost Converter
      1. 8.3.1 Buck Operation Mode
      2. 8.3.2 Boost Operation Mode
      3. 8.3.3 Buck-Boost Operation Mode
      4. 8.3.4 Operation Control
    4. 8.4 Transformer-Type Converters
      1. 8.4.1 Forward Converter
        1. 8.4.1.1 Fundamental Forward Converter
        2. 8.4.1.2 Forward Converter with Tertiary Winding
        3. 8.4.1.3 Switch Mode Power Supplies with Multiple Outputs
      2. 8.4.2 Fly-Back Converter
      3. 8.4.3 Push–Pull Converter
      4. 8.4.4 Half-Bridge Converter
      5. 8.4.5 Bridge Converter
      6. 8.4.6 Zeta Converter
    5. 8.5 Developed Converters
      1. 8.5.1 Positive Output Luo Converter (Elementary Circuit)
      2. 8.5.2 Negative Output Luo Converter (Elementary Circuit)
      3. 8.5.3 Double Output Luo Converter (Elementary Circuit)
      4. 8.5.4 Cúk Converter
      5. 8.5.5 Single-Ended Primary Inductance Converter
    6. 8.6 Tapped-Inductor Converters
    7. References
  16. Chapter 9 Voltage Lift Converters
    1. 9.1 Introduction
    2. 9.2 Seven Self-Lift Converters
      1. 9.2.1 Self-Lift Cúk Converter
        1. 9.2.1.1 Continuous Conduction Mode
        2. 9.2.1.2 Discontinuous Conduction Mode
      2. 9.2.2 Self-Lift P/O Luo Converter
        1. 9.2.2.1 Continuous Conduction Mode
        2. 9.2.2.2 Discontinuous Conduction Mode
      3. 9.2.3 Reverse Self-Lift P/O Luo Converter
        1. 9.2.3.1 Continuous Conduction Mode
        2. 9.2.3.2 Discontinuous Conduction Mode
      4. 9.2.4 Self-Lift N/O Luo Converter
        1. 9.2.4.1 Continuous Conduction Mode
        2. 9.2.4.2 Discontinuous Conduction Mode
      5. 9.2.5 Reverse Self-Lift N/O Luo Converter
        1. 9.2.5.1 Continuous Conduction Mode
        2. 9.2.5.2 Discontinuous Conduction Mode
      6. 9.2.6 Self-Lift SEPIC
        1. 9.2.6.1 Continuous Conduction Mode
        2. 9.2.6.2 Discontinuous Conduction Mode
      7. 9.2.7 Enhanced Self-Lift P/O Luo Converter
    3. 9.3 P/O Luo Converters
      1. 9.3.1 Re-Lift Circuit
      2. 9.3.2 Triple-Lift Circuit
      3. 9.3.3 Quadruple-Lift Circuit
      4. 9.3.4 Summary
    4. 9.4 N/O Luo Converters
      1. 9.4.1 Re-Lift Circuit
      2. 9.4.2 N/O Triple-Lift Circuit
      3. 9.4.3 N/O Quadruple-Lift Circuit
      4. 9.4.4 Summary
    5. 9.5 Modified P/O Luo Converters
      1. 9.5.1 Self-Lift Circuit
      2. 9.5.2 Re-Lift Circuit
      3. 9.5.3 Multilift Circuit
    6. 9.6 Double-Output Luo Converters
      1. 9.6.1 Self-Lift Circuit
        1. 9.6.1.1 Positive Conversion Path
        2. 9.6.1.2 Negative Conversion Path
        3. 9.6.1.3 Discontinuous Conduction Mode
      2. 9.6.2 Re-Lift Circuit
        1. 9.6.2.1 Positive Conversion Path
        2. 9.6.2.2 Negative Conversion Path
        3. 9.6.2.3 Discontinuous Conduction Mode
      3. 9.6.3 Triple-Lift Circuit
        1. 9.6.3.1 Positive Conversion Path
        2. 9.6.3.2 Negative Conversion Path
        3. 9.6.3.3 Discontinuous Mode
      4. 9.6.4 Quadruple-Lift Circuit
        1. 9.6.4.1 Positive Conversion Path
        2. 9.6.4.2 Negative Conversion Path
        3. 9.6.4.3 Discontinuous Conduction Mode
      5. 9.6.5 Summary
        1. 9.6.5.1 Positive Conversion Path
        2. 9.6.5.2 Negative Conversion Path
        3. 9.6.5.3 Common Parameters
    7. 9.7 Voltage-Lift Cúk Converters
      1. 9.7.1 Elementary Self-Lift Cúk Circuit
      2. 9.7.2 Developed Self-Lift Cúk Circuit
      3. 9.7.3 Re-Lift Cúk Circuit
      4. 9.7.4 Multiple-Lift Cúk Circuit
      5. 9.7.5 Simulation and Experimental Verification of Elementary and Developed Self-Lift Circuits
    8. 9.8 Voltage-Lift SEPICs
      1. 9.8.1 Self-Lift SEPIC
      2. 9.8.2 Re-Lift SEPIC
      3. 9.8.3 Multiple-Lift SEPICs
      4. 9.8.4 Simulation and Experimental Results of a Re-Lift SEPIC
    9. 9.9 Other Double-Output Voltage-Lift Converters
      1. 9.9.1 Elementary Circuit
      2. 9.9.2 Self-Lift Double-Output Circuit
      3. 9.9.3 Enhanced Series Double-Output Circuits
      4. 9.9.4 Simulation and Experimental Verification of an Enhanced Double-Output Self-Lift Circuit
    10. 9.10 Switched-Capacitorized Converters
      1. 9.10.1 One-Stage Switched-Capacitorized Buck Converter
        1. 9.10.1.1 Operation Analysis
        2. 9.10.1.2 Simulation and Experimental Results
      2. 9.10.2 Two-Stage Switched-Capacitorized Buck-Boost Converter
        1. 9.10.2.1 Operation Analysis
        2. 9.10.2.2 Simulation and Experimental Results
      3. 9.10.3 Three-Stage Switched-Capacitorized P/O Luo Converter
        1. 9.10.3.1 Operation Analysis
        2. 9.10.3.2 Simulation and Experimental Results
      4. 9.10.4 Three-Stage Switched-Capacitorized N/O Luo Converter
        1. 9.10.4.1 Operation Analysis
        2. 9.10.4.2 Simulation and Experimental Results
      5. 9.10.5 Discussion
        1. 9.10.5.1 Voltage Drop across the Switched Capacitors
        2. 9.10.5.2 Necessity of the Voltage Drop across the Switched Capacitors and Energy Transfer
        3. 9.10.5.3 Inrush Input Current
        4. 9.10.5.4 Power Switch-on Process
        5. 9.10.5.5 Suppression of the Inrush and Surge Input Current
    11. References
  17. Chapter 10 Super-Lift Converters and Ultra-Lift Converters
    1. 10.1 Introduction
    2. 10.2 P/O SL Luo Converters
      1. 10.2.1 Main Series
        1. 10.2.1.1 Elementary Circuit
        2. 10.2.1.2 Re-Lift Circuit
        3. 10.2.1.3 Triple-Lift Circuit
        4. 10.2.1.4 Higher-Order Lift-Circuit
      2. 10.2.2 Additional Series
        1. 10.2.2.1 Elementary Additional Circuit
        2. 10.2.2.2 Re-Lift Additional Circuit
        3. 10.2.2.3 Triple-Lift Additional Circuit
        4. 10.2.2.4 Higher-Order-Lift Additional Circuit
      3. 10.2.3 Enhanced Series
        1. 10.2.3.1 Elementary Enhanced Circuit
        2. 10.2.3.2 Re-Lift Enhanced Circuit
        3. 10.2.3.3 Triple-Lift Enhanced Circuit
        4. 10.2.3.4 Higher-Order-Lift Enhanced Circuit
      4. 10.2.4 Re-Enhanced Series
        1. 10.2.4.1 Elementary Re-Enhanced Circuit
        2. 10.2.4.2 Re-Lift Re-Enhanced Circuit
        3. 10.2.4.3 Triple-Lift Re-Enhanced Circuit
        4. 10.2.4.4 Higher-Order-Lift Re-Enhanced Circuit
      5. 10.2.5 Multiple-(j)Enhanced Series
        1. 10.2.5.1 Elementary Multiple-Enhanced Circuit
        2. 10.2.5.2 Re-Lift Multiple-(j)Enhanced Circuit
        3. 10.2.5.3 Triple-Lift Multiple(j)-Enhanced Circuit
        4. 10.2.5.4 Higher-Order-Lift Multiple-Enhanced Circuit
      6. 10.2.6 Summary of P/O SL Luo Converters
    3. 10.3 N/O SL Luo Converters
      1. 10.3.1 Main Series
        1. 10.3.1.1 N/O Elementary Circuit
        2. 10.3.1.2 N/O Re-Lift Circuit
        3. 10.3.1.3 N/O Triple-Lift Circuit
        4. 10.3.1.4 N/O Higher-Order-Lift Circuit
      2. 10.3.2 N/O Additional Series
        1. 10.3.2.1 N/O Elementary Additional Circuit
        2. 10.3.2.2 N/O Re-Lift Additional Circuit
        3. 10.3.2.3 Triple-Lift Additional Circuit
        4. 10.3.2.4 N/O Higher-Order-Lift Additional Circuit
      3. 10.3.3 Enhanced Series
        1. 10.3.3.1 N/O Elementary Enhanced Circuit
        2. 10.3.3.2 N/O Re-Lift Enhanced Circuit
        3. 10.3.3.3 N/O Triple-Lift Enhanced Circuit
        4. 10.3.3.4 N/O Higher-Order-Lift Enhanced Circuit
      4. 10.3.4 Re-Enhanced Series
        1. 10.3.4.1 N/O Elementary Re-Enhanced Circuit
        2. 10.3.4.2 N/O Re-Lift Re-Enhanced Circuit
        3. 10.3.4.3 N/O Triple-Lift Re-Enhanced Circuit
        4. 10.3.4.4 N/O Higher-Order-Lift Re-Enhanced Circuit
      5. 10.3.5 N/O Multiple-Enhanced Series
        1. 10.3.5.1 N/O Elementary Multiple-Enhanced Circuit
        2. 10.3.5.2 N/O Re-Lift Multiple-Enhanced Circuit
        3. 10.3.5.3 N/O Triple-Lift Multiple-Enhanced Circuit
        4. 10.3.5.4 N/O Higher-Order-Lift Multiple- Enhanced Circuit
      6. 10.3.6 Summary of N/O SL Luo Converters
    4. 10.4 P/O Cascaded Boost Converters
      1. 10.4.1 Main Series
        1. 10.4.1.1 Elementary Boost Circuit
        2. 10.4.1.2 Two-Stage Boost Circuit
        3. 10.4.1.3 Three-Stage Boost Circuit
        4. 10.4.1.4 Higher-Stage Boost Circuit
      2. 10.4.2 Additional Series
        1. 10.4.2.1 Elementary Boost Additional (Double) Circuit
        2. 10.4.2.2 Two-Stage Boost Additional Circuit
        3. 10.4.2.3 Three-Stage Boost Additional Circuit
        4. 10.4.2.4 Higher-Stage Boost Additional Circuit
      3. 10.4.3 Double Series
        1. 10.4.3.1 Elementary Double-Boost Circuit
        2. 10.4.3.2 Two-Stage Double-Boost Circuit
        3. 10.4.3.3 Three-Stage Double-Boost Circuit
        4. 10.4.3.4 Higher-Stage Double-Boost Circuit
      4. 10.4.4 Triple Series
        1. 10.4.4.1 Elementary Triple-Boost Circuit
        2. 10.4.4.2 Two-Stage Triple-Boost Circuit
        3. 10.4.4.3 Three-Stage Triple-Boost Circuit
        4. 10.4.4.4 Higher-Stage Triple-Boost Circuit
      5. 10.4.5 Multiple Series
        1. 10.4.5.1 Elementary Multiple-Boost Circuit
        2. 10.4.5.2 Two-Stage Multiple-Boost Circuit
        3. 10.4.5.3 Three-Stage Multiple-Boost Circuit
        4. 10.4.5.4 Higher-Stage Multiple-Boost Circuit
      6. 10.4.6 Summary of P/O Cascaded Boost Converters
    5. 10.5 N/O Cascaded Boost Converters
      1. 10.5.1 Main Series
        1. 10.5.1.1 N/O Elementary Boost Circuit
        2. 10.5.1.2 N/O Two-Stage Boost Circuit
        3. 10.5.1.3 N/O Three-Stage Boost Circuit
        4. 10.5.1.4 N/O Higher-Stage Boost Circuit
      2. 10.5.2 N/O Additional Series
        1. 10.5.2.1 N/O Elementary Additional Boost Circuit
        2. 10.5.2.2 N/O Two-Stage Additional Boost Circuit
        3. 10.5.2.3 N/O Three-Stage Additional Boost Circuit
        4. 10.5.2.4 N/O Higher-Stage Additional Boost Circuit
      3. 10.5.3 Double Series
        1. 10.5.3.1 N/O Elementary Double-Boost Circuit
        2. 10.5.3.2 N/O Two-Stage Double-Boost Circuit
        3. 10.5.3.3 N/O Three-Stage Double-Boost Circuit
        4. 10.5.3.4 N/O Higher-Stage Double-Boost Circuit
      4. 10.5.4 Triple Series
        1. 10.5.4.1 N/O Elementary Triple-Boost Circuit
        2. 10.5.4.2 N/O Two-Stage Triple-Boost Circuit
        3. 10.5.4.3 N/O Three-Stage Triple-Boost Circuit
        4. 10.5.4.4 N/O Higher-Stage Triple-Boost Circuit
      5. 10.5.5 Multiple Series
        1. 10.5.5.1 N/O Elementary Multiple-Boost Circuit
        2. 10.5.5.2 N/O Two-Stage Multiple-Boost Circuit
        3. 10.5.5.3 N/O Three-Stage Multiple-Boost Circuit
        4. 10.5.5.4 N/O Higher-Stage Multiple-Boost Circuit
      6. 10.5.6 Summary of N/O Cascaded Boost Converters
    6. 10.6 Ultra-Lift Luo Converter
      1. 10.6.1 Operation of Ultra-Lift Luo Converter
        1. 10.6.1.1 Continuous Conduction Mode
        2. 10.6.1.2 Discontinuous Conduction Mode
      2. 10.6.2 Instantaneous Values
        1. 10.6.2.1 Continuous Conduction Mode
        2. 10.6.2.2 Discontinuous Conduction Mode
      3. 10.6.3 Comparison of the Gains between Ultra-Lift Luo Converter and Other Converters
      4. 10.6.4 Simulation Results
      5. 10.6.5 Experimental Results
      6. 10.6.6 Summary
    7. References
  18. Chapter 11 Split-Capacitor and Split-Inductor Techniques and Their Application in Positive-Output Super-Lift Luo Converters
    1. 11.1 Introduction
    2. 11.2 Split Capacitors
    3. 11.3 Split Inductors
    4. 11.4 Split Capacitors and Split Inductors Applied in the Positive-Output Elementary Super-Lift Luo Converter
      1. 11.4.1 Two-Split Capacitors (α = 2) Applied in the P/O Elementary SL Circuit
      2. 11.4.2 Two Split Inductors (β = 2) Applied in the Elementary P/O SL Circuit
      3. 11.4.3 α-Split Capacitors and β-Split Inductors Applied in the Elementary P/O SL Circuit
    5. 11.5 Main Series
    6. 11.6 MEC, Split Capacitors Used in Double/Enhanced Circuit
    7. 11.7 Additional Series
      1. 11.7.1 Elementary Additional Circuit
      2. 11.7.2 Re-Lift Additional Circuit
      3. 11.7.3 Triple-Lift Additional Circuit
      4. 11.7.4 Higher-Order Lift Additional Circuits
    8. 11.8 Higher-Order Series
      1. 11.8.1 Enhanced Series
      2. 11.8.2 Re-Enhanced Series
      3. 11.8.3 Multiple (j)-Enhanced Series
    9. 11.9 Summary of P/O Super-Lift Luo Converters Applying Split Capacitors and Split Inductors
    10. 11.10 Simulation Results
      1. 11.10.1 Simulation Results of a Re-Lift Circuit
      2. 11.10.2 Simulation Results of a Re-Lift Additional Circuit
    11. 11.11 Experimental Results
      1. 11.11.1 Experimental Results of a Re-Lift Circuit
      2. 11.11.2 Experimental Results of a Re-Lift Additional Circuit
    12. References
  19. Chapter 12 Pulse-Width-Modulated DC/AC Inverters
    1. 12.1 Introduction
    2. 12.2 Parameters Used in PWM Operation
      1. 12.2.1 Modulation Ratios
        1. 12.2.1.1 Linear Range (ma ≤ 1.0)
        2. 12.2.1.2 Overmodulation (1.0 < ma ≤ 1.27)
        3. 12.2.1.3 Square Wave (Sufficiently Large ma > 1.27)
        4. 12.2.1.4 Small mf (mf ≤ 21)
        5. 12.2.1.5 Large mf (mf > 21)
      2. 12.2.2 Harmonic Parameters
    3. 12.3 Typical PWM Inverters
      1. 12.3.1 Voltage Source Inverter
      2. 12.3.2 Current Source Inverter
      3. 12.3.3 Impedance Source Inverter (z-Source Inverter)
      4. 12.3.4 Circuits of DC/AC Inverters
    4. 12.4 Single-Phase Voltage Source Inverter
      1. 12.4.1 Single-Phase Half-Bridge VSI
      2. 12.4.2 Single-Phase Full-Bridge VSI
    5. 12.5 Three-Phase Full-Bridge Voltage Source Inverter
    6. 12.6 Three-Phase Full-Bridge Current Source Inverter
    7. 12.7 Multistage PWM Inverter
      1. 12.7.1 Unipolar PWM VSI
      2. 12.7.2 Multicell PWM VSI
      3. 12.7.3 Multilevel PWM Inverter
    8. 12.8 Impedance-Source Inverters
      1. 12.8.1 Comparison with VSI and CSI
      2. 12.8.2 Equivalent Circuit and Operation
      3. 12.8.3 Circuit Analysis and Calculations
    9. 12.9 Extended Boost z-Source Inverters
      1. 12.9.1 Introduction to ZSI and Basic Topologies
      2. 12.9.2 Extended Boost qZSI Topologies
        1. 12.9.2.1 Diode-Assisted Extended Boost qZSI Topologies
        2. 12.9.2.2 Capacitor-Assisted Extended Boost qZSI Topologies
      3. 12.9.3 Simulation Results
    10. References
  20. Chapter 13 Multilevel and Soft-Switching DC/AC Inverters
    1. 13.1 Introduction
    2. 13.2 Diode-Clamped (Neutral-Point-Clamped) Multilevel Inverters
    3. 13.3 Capacitor-Clamped (Flying Capacitor) Multilevel Inverters
    4. 13.4 Multilevel Inverters Using H-Bridges Converters
      1. 13.4.1 Cascaded Equalvoltage Multilevel Inverters
      2. 13.4.2 Binary Hybrid Multilevel Inverter
      3. 13.4.3 Quasi-Linear Multilevel Inverter
      4. 13.4.4 Trinary Hybrid Multilevel Inverter
    5. 13.5 Other Kinds of Multilevel Inverters
      1. 13.5.1 Generalized Multilevel Inverters
      2. 13.5.2 Mixed-Level Multilevel Inverter Topologies
      3. 13.5.3 Multilevel Inverters by Connection of Three-Phase Two-Level Inverters
    6. 13.6 Soft-Switching Multilevel Inverters
      1. 13.6.1 Notched DC Link Inverters for Brushless DC Motor Drive
        1. 13.6.1.1 Resonant Circuit
        2. 13.6.1.2 Design Consideration
        3. 13.6.1.3 Control Scheme
        4. 13.6.1.4 Simulation and Experimental Results
      2. 13.6.2 Resonant Pole Inverter
        1. 13.6.2.1 Topology of the Resonant Pole Inverter
        2. 13.6.2.2 Operation Principle
        3. 13.6.2.3 Design Considerations
        4. 13.6.2.4 Simulation and Experimental Results
      3. 13.6.3 Transformer-Based Resonant DC Link Inverter
        1. 13.6.3.1 Resonant Circuit
        2. 13.6.3.2 Design Consideration
        3. 13.6.3.3 Control Scheme
        4. 13.6.3.4 Simulation and Experimental Results
    7. References
  21. Chapter 14 Advanced Multilevel DC/AC Inverters Used in Solar Panel Energy Systems
    1. 14.1 Introduction
    2. 14.2 Progressions (Series)
      1. 14.2.1 Arithmetical Progressions
        1. 14.2.1.1 Unit Progression
        2. 14.2.1.2 Natural Number Progression
        3. 14.2.1.3 Odd Number Progression
      2. 14.2.2 Geometric Progressions
        1. 14.2.2.1 Binary Progression
        2. 14.2.2.2 Trinary Number Progression
      3. 14.2.3 Special Progressions
        1. 14.2.3.1 Luo-Progression
        2. 14.2.3.2 Ye-Progression
    3. 14.3 Laddered Multilevel DC/AC Inverters
      1. 14.3.1 Special Switches
        1. 14.3.1.1 Toggle Switch
        2. 14.3.1.2 Changeover Switch
        3. 14.3.1.3 Band Switch
      2. 14.3.2 General Circuit of Laddered Inverters
      3. 14.3.3 Linear Ladder Inverters
      4. 14.3.4 Natural Number Ladder Inverters
      5. 14.3.5 Odd Number Ladder Inverters
      6. 14.3.6 Binary Ladder Inverters
      7. 14.3.7 Modified Binary Ladder Inverters
      8. 14.3.8 Luo-Progression Ladder Inverters
      9. 14.3.9 Ye-Progression Ladder Inverters
      10. 14.3.10 Trinary Ladder Inverters
    4. 14.4 Comparison of All Laddered Inverters
    5. 14.5 Solar Panel Energy Systems
    6. 14.6 Simulation and Experimental Results
    7. 14.7 Switched-Capacitor Multilevel DC/AC Inverters
      1. 14.7.1 Switched Capacitor Used in Multilevel DC/AC Inverters
        1. 14.7.1.1 Five-Level SC Inverter
        2. 14.7.1.2 Nine-Level SC Inverter
        3. 14.7.1.3 Fifteen-Level SC Inverter
        4. 14.7.1.4 Higher-Level SC Inverter
      2. 14.7.2 Simulation and Experimental Results
    8. 14.8 Super-Lift Converter Multilevel DC/AC Inverters
      1. 14.8.1 Some P/O Super-Lift Luo-Converters
      2. 14.8.2 Super-Lift Converters Used in Multilevel DC/AC Inverters
        1. 14.8.2.1 Seven-Level SL Inverter
        2. 14.8.2.2 Fifteen-Level SL Inverter
        3. 14.8.2.3 Twenty-One-Level SL Inverter
        4. 14.8.2.4 Higher-Level SL Inverter
      3. 14.8.3 Simulation and Experimental Results
    9. References
  22. Chapter 15 Traditional AC/AC Converters
    1. 15.1 Introduction
    2. 15.2 Single-Phase AC/AC Voltage-Regulation Converters
      1. 15.2.1 Phase-Controlled Single-Phase AC/AC Voltage Controller
        1. 15.2.1.1 Operation with R-Load
        2. 15.2.1.2 Operation with RL Load
        3. 15.2.1.3 Gating Signal Requirements
        4. 15.2.1.4 Operation with α<ϕ
        5. 15.2.1.5 Power Factor and Harmonics
      2. 15.2.2 Single-Phase AC/AC Voltage Controller with On/Off Control
        1. 15.2.2.1 Integral Cycle Control
        2. 15.2.2.2 PWM AC Chopper
    3. 15.3 Three-Phase AC/AC Voltage-Regulation Converters
      1. 15.3.1 Phase-Controlled Three-Phase AC Voltage Controllers
      2. 15.3.2 Fully Controlled Three-Phase Three-Wire AC Voltage Controller
        1. 15.3.2.1 Star-Connected Load with Isolated Neutral
        2. 15.3.2.2 RL Load
        3. 15.3.2.3 Delta-Connected R-Load
    4. 15.4 Cycloconverters
      1. 15.4.1 Single-Phase Input/Single-Phase Output Cycloconverter
        1. 15.4.1.1 Operation with R Load
        2. 15.4.1.2 Operation with RL Load
      2. 15.4.2 Three-Phase Cycloconverters
        1. 15.4.2.1 Three-Phase Three-Pulse Cycloconverter
        2. 15.4.2.2 Three-Phase Six-Pulse and Twelve-Pulse Cycloconverter
      3. 15.4.3 Cycloconverter Control Scheme
        1. 15.4.3.1 Control Circuit Block Diagram
        2. 15.4.3.2 Improved Control Schemes
      4. 15.4.4 Cycloconverter Harmonics and Input Current Waveform
        1. 15.4.4.1 Circulating-Current-Free Operations
        2. 15.4.4.2 Circulating-Current Operation
        3. 15.4.4.3 Other Harmonics Distortion Terms
        4. 15.4.4.4 Input Current Waveform
      5. 15.4.5 Cycloconverter Input Displacement/Power Factor
      6. 15.4.6 Effects of Source Impedance
      7. 15.4.7 Simulation Analysis of Cycloconverter Performance
      8. 15.4.8 Forced-Commutated Cycloconverter
    5. 15.5 Matrix Converters
      1. 15.5.1 Operation and Control Methods of the Matrix Converter
        1. 15.5.1.1 Venturini Method
        2. 15.5.1.2 SVM Method
        3. 15.5.1.3 Control Implementation and Comparison of the Two Methods
      2. 15.5.2 Commutation and Protection Issues in a Matrix Converter
    6. References
  23. Chapter 16 Improved AC/AC Converters
    1. 16.1 DC-Modulated Single-Stage AC/AC Converters
      1. 16.1.1 Bidirectional Exclusive Switches SM–SS
      2. 16.1.2 Mathematical Modeling for DC/DC Converters
      3. 16.1.3 DC-Modulated Single-Stage Buck-Type AC/AC Converter
        1. 16.1.3.1 Positive Input Voltage Half-Cycle
        2. 16.1.3.2 Negative Input Voltage Half-Cycle
        3. 16.1.3.3 Whole-Cycle Operation
        4. 16.1.3.4 Simulation and Experimental Results
      4. 16.1.4 DC-Modulated Single-Stage Boost-Type AC/AC Converter
        1. 16.1.4.1 Positive Input Voltage Half-Cycle
        2. 16.1.4.2 Negative Input Voltage Half-Cycle
        3. 16.1.4.3 Whole-Cycle Operation
        4. 16.1.4.4 Simulation and Experimental Results
      5. 16.1.5 DC-Modulated Single-Stage Buck-Boost-Type AC/AC Converter
        1. 16.1.5.1 Positive Input Voltage Half-Cycle
        2. 16.1.5.2 Negative Input Voltage Half-Cycle
        3. 16.1.5.3 Whole-Cycle Operation
        4. 16.1.5.4 Simulation and Experimental Results
    2. 16.2 Other Types of DC-Modulated AC/AC Converters
      1. 16.2.1 DC-Modulated Positive Output Luo-Converter-Type AC/AC Converter
      2. 16.2.2 DC-Modulated Two-Stage Boost-Type AC/AC Converter
    3. 16.3 DC-Modulated Multiphase AC/AC Converters
      1. 16.3.1 DC-Modulated Three-Phase Buck-Type AC/AC Converter
      2. 16.3.2 DC-Modulated Three-Phase Boost-Type AC/AC Converter
      3. 16.3.3 DC-Modulated Three-Phase Buck-Boost-Type AC/AC Converter
    4. 16.4 Sub-Envelope Modulation Method to Reduce THD of AC/AC Matrix Converters
      1. 16.4.1 Sub-Envelope Modulation Method
        1. 16.4.1.1 Measure the Input Instantaneous Voltage
        2. 16.4.1.2 Modulation Algorithm
        3. 16.4.1.3 Improve Voltage Ratio
      2. 16.4.2 Twenty-Four-Switches Matrix Converter
      3. 16.4.3 Current Commutation
        1. 16.4.3.1 Current Commutation between Two Input Phases
        2. 16.4.3.2 Current-Commutation-Related Three Input Phases
      4. 16.4.4 Simulation and Experimental Results
        1. 16.4.4.1 Simulation Results
        2. 16.4.4.2 Experimental Results
    5. References
  24. Chapter 17 AC/DC/AC and DC/AC/DC Converters
    1. 17.1 Introduction
    2. 17.2 AC/DC/AC Converters Used in Wind Turbine Systems
      1. 17.2.1 Review of Traditional AC/AC Converters
      2. 17.2.2 New AC/DC/AC Converters
        1. 17.2.2.1 AC/DC/AC Boost-Type Converter
        2. 17.2.2.2 Three-Level Diode-Clamped AC/DC/AC Converter
      3. 17.2.3 Wind Turbine System Linking to Utility Network
    3. 17.3 DC/AC/DC Converters
      1. 17.3.1 Review of Traditional DC/DC Converters
      2. 17.3.2 Chopper-Type DC/AC/DC Converters
      3. 17.3.3 Switched-Capacitor DC/AC/DC Converters
        1. 17.3.3.1 Single-Stage Switched-Capacitor DC/AC/DC Converter
        2. 17.3.3.2 Three-Stage Switched-Capacitor DC/AC/DC Converter
        3. 17.3.3.3 Four-Stage Switched-Capacitor DC/AC/DC Converter
    4. References
  25. Chapter 18 Designs of Solar Panel and Wind Turbine Energy Systems
    1. 18.1 Introduction
    2. 18.2 Wind Turbine Energy Systems
      1. 18.2.1 Technical Features
      2. 18.2.2 Design Example
      3. 18.2.3 Converters’Design
      4. 18.2.4 Simulation Results
    3. 18.3 Solar Panel Energy Systems
      1. 18.3.1 Technical Features
      2. 18.3.2 P/O Super-Lift Luo Converter
      3. 18.3.3 Closed-Loop Control
      4. 18.3.4 PWM Inverter
      5. 18.3.5 System Design
      6. 18.3.6 Simulation Results
    4. References
  26. Index

Product information

  • Title: Renewable Energy Systems
  • Author(s): Fang Lin Luo, Ye Hong
  • Release date: December 2017
  • Publisher(s): CRC Press
  • ISBN: 9781351832601