Conditional random fields
Discriminative models such as linear, logistic regression, multilayer perceptron, and support vector machines are described in part 3 – Gradient-based Learning. However, it would make sense to introduce a discriminative alternative to HMM in this chapter dedicated to sequential data models.
The conditional random field (CRF) is a discriminative machine learning algorithm introduced by John Lafferty, Andrew McCallum, and Fernando Pereira [7:9]. The algorithm was originally developed to assign labels to a set of observation sequences as found.
Let's consider a concrete example to understand the conditional relation between the observations and the label data.
Introduction to CRF
Let's consider the problem of detecting a fault ...
Get Scala for Machine Learning - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.