Applications
Let's consider a few practical examples and libraries in Spark/Scala starting with a very traditional problem of word counting.
Word count
Most modern machine learning algorithms require multiple passes over data. If the data fits in the memory of a single machine, the data is readily available and this does not present a performance bottleneck. However, if the data becomes too large to fit into RAM, one has a choice of either dumping pieces of the data on disk (or database), which is about 100 times slower, but has a much larger capacity, or splitting the dataset between multiple machines across the network and transferring the results. While there are still ongoing debates, for most practical systems, analysis shows that storing the ...
Get Scala:Applied Machine Learning now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.