O'Reilly logo

Separation Process Engineering: Includes Mass Transfer Analysis, Third Edition by Phillip C. Wankat

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

E. More Complex Problems

E1.* We have a liquid feed that is 48 wt % m-xylene and 52 wt % o-xylene, which are to be separated in a fractional extractor (Figure 13-5) at 25°C and 101.3 kPa. Solvent 1 is β,β′-thiodipropionitrile, and solvent 2 is n-hexane. Equilibrium data are in Table 13-3. For each kilogram of feed, 200 kg of solvent 1 and 20 kg of solvent 2 are used. Both solvents are pure when they enter the cascade. We desire a 92% recovery of o-xylene in solvent 1 and a 94% recovery of m-xylene in n-hexane. Find outlet composition, N, and Nf. Adjust the recovery of m-xylene if necessary to solve this problem.

E2. We are extracting meta, ortho and para xylenes from n-hexane using β, β’Thiodipropionitrile as solvent. Solvent and diluent (n-hexane) ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required