O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Solar Radiation

Book Description

Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling.

While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation measurements. It also examines the accuracy of solar radiation modeling and measurements. The majority of the book describes the most popular simple models for estimating broadband and spectral solar resources available to flat plate, concentrating, photovoltaic, solar thermal, and daylighting engineering designs. Sufficient detail is provided for readers to implement the models in assorted development environments.

Covering the nuts and bolts of practical solar radiation modeling applications, this book helps readers translate solar radiation data into viable, real-world renewable energy applications. It answers many how-to questions relating to solar energy conversion systems, solar daylighting, energy efficiency of buildings, and other solar radiation applications.

Table of Contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Series Editor
  8. Series Editor’s Preface
  9. Preface
  10. Acknowledgments
  11. About the Author
  12. Chapter 1 Fundamentals of Solar Radiation
    1. 1.1 The Sun as a Star
    2. 1.2 The Earth and the Sun
      1. 1.2.1 The Orbit and Rotation of the Earth
      2. 1.2.2 The Sun and Intensity of Extraterrestrial Solar Radiation
    3. 1.3 Solar Time and Solar Position
      1. 1.3.1 Solar Time
      2. 1.3.2 Declination
      3. 1.3.3 Equation of Time
      4. 1.3.4 Local Apparent Time
      5. 1.3.5 Solar Position: Altitude and Azimuth
      6. 1.3.6 Solar Incidence Angles
      7. 1.3.7 Air Mass
    4. 1.4 Solar Components
    5. 1.5 Clearness Index
    6. 1.6 Summary
    7. References
  13. Chapter 2 Introduction to Solar Radiation Measurements
    1. 2.1 Overview of Detector Technology
    2. 2.2 Calorimetry
      1. 2.2.1 Thermoelectric Detectors
        1. 2.2.1.1 Thermopiles
        2. 2.2.1.2 Resistance Detectors
      2. 2.2.2 Photoelectric Detectors
    3. 2.3 Pyrheliometers: Measuring Direct Normal Irradiance
      1. 2.3.1 Pyrheliometer Design
      2. 2.3.2 Circumsolar Radiation
    4. 2.4 Pyranometers: Measuring Hemispherical Radiation
      1. 2.4.1 Thermal Pyranometers
      2. 2.4.2 Photoelectric Pyranometers
      3. 2.4.3 Diffuse Measurements
      4. 2.4.4 Rotating Shadowband Radiometers
    5. 2.5 Spectral Distributions
    6. 2.6 Uncertainty
      1. 2.6.1 The Guide to Measurement Uncertainty
      2. 2.6.2 Sources of Radiometric Uncertainty
      3. 2.6.3 The World Radiometric Reference
      4. 2.6.4 Pyranometer Geometrical Response Functions
      5. 2.6.5 Summary of Uncertainty Sources and Magnitudes in Solar Measurements
    7. 2.7 Measurement Networks
    8. 2.8 Summary
    9. References
  14. Chapter 3 Modeling Clear Sky Solar Radiation
    1. 3.1 The Atmospheric Filter
    2. 3.2 Physics-Based Models
    3. 3.3 Empirical Models
    4. 3.4 Parameterization Models
      1. 3.4.1 Bird Clear Sky Direct Beam Irradiance
      2. 3.4.2 Bird Clear Sky Diffuse Irradiance
      3. 3.4.3 The Bird Clear Sky Total Hemispherical Irradiance
      4. 3.4.4 Computational Example
      5. 3.4.5 The Ineichen Simplified SOLIS Model
      6. 3.4.6 Extension of the Simple SOLIS Model
      7. 3.4.7 Gueymard’s REST2 Model
        1. 3.4.7.1 Basic REST2 Structure
        2. 3.4.7.2 The REST2 Model Transmittance Equations
        3. 3.4.7.3 REST Computational Example
    5. 3.5 Summary
    6. References
  15. Chapter 4 Modeling Global Irradiance under All Sky Conditions
    1. 4.1 Simple Correlation Models
      1. 4.1.1 Solar Radiation from Temperature Observations
      2. 4.1.2 Correlations with Sunshine Duration
    2. 4.2 Clouds
      1. 4.2.1 Cloud Observations
    3. 4.3 Empirical All Sky Radiation Models
      1. 4.3.1 Kasten and Czeplak Models
      2. 4.3.2 Simple Cloud Cover Modifier for Clear Sky Models
    4. 4.4 All Sky Solar Radiation from Weather Satellites
    5. 4.5 The Future: Forecasting Solar Radiation
    6. 4.6 Summary
    7. References
  16. Chapter 5 Modeling Missing Components
    1. 5.1 Introduction
    2. 5.2 Estimating Diffuse from Global Horizontal Irradiance
      1. 5.2.1 Orgill and Hollands Correlation
      2. 5.2.2 Erbs Correlation
      3. 5.2.3 Boes DNI Correlation
    3. 5.3 Estimating Direct from Global Normal Irradiance
      1. 5.3.1 The Maxwell Direct Insolation Simulation Code Model
      2. 5.3.2 The Perez DIRINT and DIRINDEX Models
        1. 5.3.2.1 DIRINT Model
        2. 5.3.2.2 DIRINDEX Model
    4. 5.4 Summary
    5. References
  17. Chapter 6 Applications: Modeling Solar Radiation Available to Collectors
    1. 6.1 Solar Collector Geometries
    2. 6.2 Isotropic Models
      1. 6.2.1 Liu and Jordan
    3. 6.3 Anisotropic Models
    4. 6.4 The Perez Anisotropic Tilt Conversion Model
      1. 6.4.1 Computational Example
      2. 6.4.2 The Accuracy of the Perez Anisotropic Model
    5. 6.5 Summary
    6. References
  18. Chapter 7 Introduction to Modeling Spectral Distributions
    1. 7.1 The Spectral Atmospheric Filter
    2. 7.2 Renewable Energy Applications for Spectral Data and Models
    3. 7.3 Complex Spectral Models
      1. 7.3.1 MODTRAN and LOWTRAN
      2. 7.3.2 LibRadtran and Other Complex Spectral Models
    4. 7.4 Standard Spectral Distributions
      1. 7.4.1 Reference AM0 Extraterrestrial Spectra
      2. 7.4.2 Reference Terrestrial Spectra for Renewable Energy Applications
      3. 7.4.3 The International Commission on Illumination
    5. 7.5 CIE Spectral Model—Illuminant D65 and Daylight
    6. 7.6 Bird Clear Sky Spectral Model SPCTRL2
      1. 7.6.1 Spectral Transmission Functions
      2. 7.6.2 Diffuse Spectral Irradiance on a Horizontal Surface
      3. 7.6.3 Diffuse Spectral Irradiance on a Tilted Surface
    7. 7.7 Gueymard Clear Sky Spectral Model SMARTS
    8. 7.8 SPCTRL2 and SMARTS for ASTM Standard Reference Conditions
    9. 7.9 Spectral Distributions under All Sky Conditions
    10. 7.10 Summary
    11. References
  19. Chapter 8 Introduction to Modeling Daylight
    1. 8.1 Introduction
    2. 8.2 Illuminance versus Irradiance
      1. 8.2.1 Photopic Response
      2. 8.2.2 Luminous Efficacy
    3. 8.3 Applications of Daylight Data and Models
      1. 8.3.1 Interior Applications
      2. 8.3.2 Exterior Applications
    4. 8.4 The Perez Anisotropic Illuminance Model
      1. 8.4.1 Perez Luminous Efficacy Functions
      2. 8.4.2 Illuminance on Tilted Surfaces
      3. 8.4.3 Uncertainty of the Perez Anisotropic Illuminance Model
    5. 8.5 International Commission on Illumination Models
      1. 8.5.1 CIE Standard Sky Models
      2. 8.5.2 CIE Gradation and Indicatrix Functions
      3. 8.5.3 Computational Example
    6. 8.6 Sky Luminance Model Accuracy
    7. 8.7 Other Sky Luminance Distribution Models
      1. 8.7.1 Computational Example
    8. 8.8 Other Reading
    9. 8.9 Summary
    10. References
  20. Chapter 9 Summary and Future Prospects
    1. 9.1 Overview of the Modeling Chapters
    2. 9.2 Current Issues and Future Prospects
  21. Appendix A: Bird Clear Sky Model in Excel
  22. Appendix B: Excel Structure for DISC Model of Direct Normal Irradiance (DNI) from Global Horizontal Irradiance (GHI)
  23. Appendix C: Tables for CIE D65 Reference Spectrum and Spectral Daylight Temperature Model
  24. Appendix D: SPCTRL2 FORTRAN Source Code
  25. Appendix E: Photopic Response Function V(λ) Curve
  26. Appendix F: Perez Anisotropic Model Coefficients for Luminous Efficacy and Zenith Luminance Model
  27. Index