Statistical and Machine Learning Approaches for Network Analysis
by Matthias Dehmer, Subhash C. Basak
References
1. D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness, Princeton University Press, New Jersey, 1999.
2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, 2003.
3. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach, Cambridge University Press, Cambridge, 2004.
4. M.E.J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.
5. B. Bollobas, Random Graphs, Academic Press, London, 1985.
6. A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
7. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47 (2002).
8. A.-L. Barabási, Z.N. Oltvai, Network biology: understanding the cell's functional organization, Nat. Rev. Genet. 5, 101 (2004).
9. R. Albert, Scale-free networks in cell biology, J. Cell Sci. 118, 4947 (2005).
10. http://www.yworks.com/products/yed/
11. C. Song, S. Havlin, H.A. Makse, Self-similarity of complex networks, Nature 433, 392 (2005).
12. M. Arita, Scale-freeness and biological networks, J. Biochem. 138, 1 (2005).
13. L. Li, D. Alderson, J.C. Doyle, W. Willinger, Towards a theory of scale-free graphs: definition, properties, and implications, Inter. Math. 2, 431 (2005).
14. R. Tanaka, Scale-rich metabolic networks, Phys. Rev. Lett. 94, 168101 (2005).
15. G. Szabó, M. Alava, J. Kertész, Structural ...