1. Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions. Dover, New York. page 228, 248, 256, 262, 263
  2. Adams, D. C. and Otárola-Castillo, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4): 393–399. page 173
  3. Adams, D. C., Rohlf, F. J., and Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the revolution. Italian Journal of Zoology, 71: 5–16. page 397
  4. Adams, D. C., Rohlf, F. J., and Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy, 24(1): 7–14. page 397
  5. Afsari, B. (2011). Riemannian Lp center of mass: existence, uniqueness, and convexity. Proceedings of the American Mathematical Society, 139(2): 655–673. page 111, 112, 318
  6. Afsari, B., Tron, R., and Vidal, R. (2013). On the convergence of gradient descent for finding the Riemannian center of mass. SIAM Journal on Control and Optimization, 51(3): 2230–2260. page 320
  7. Airoldi, C. A., Bergonzi, S., and Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. PNAS, 107: 18898–18902. page 208, 209, 212
  8. Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall, London. page 40
  9. Albers, C. J. and Gower, J. C. (2010). A general approach to handling missing values in Procrustes analysis. Advanced Data Analysis Classification, 4(4): ...

Get Statistical Shape Analysis, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.