Anhang A. Referenzen für Teil I

  • [Armbrust2018] Armbrust, M., T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, und M. Zaharia. "Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark", 27. Mai 2018. https://stanford.io/2Jia3iY.

  • [Bhartia2016] Bhartia, R. "Optimize Spark-Streaming to Efficiently Process Amazon Kinesis Streams," AWS Big Data blog, February 26, 2016. https://amzn.to/2E7I69h.

  • [Chambers2018] Chambers, B., und Zaharia, M., Spark: The Definitive Guide. O'Reilly, 2018.

  • [Chintapalli2015] Chintapalli, S., D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Musbaum, K. Patil, B. Peng, und P. Poulosky. "Benchmarking von Streaming Computation Engines bei Yahoo!" Yahoo! Engineering, 18. Dezember 2015. http://bit.ly/2bhgMJd.

  • [Das2013] Das, Tathagata. "Deep Dive With Spark Streaming", Spark Meetup, 17. Juni 2013. http://bit.ly/2Q8Xzem.

  • [Das2014] Das, Tathagata, und Yuan Zhong. "Adaptive Stream Processing Using Dynamic Batch Sizing", 2014 ACM Symposium on Cloud Computing. http://bit.ly/2WTOuby.

  • [Das2015] Das, Tathagata. "Verbesserte Fehlertoleranz und kein Datenverlust in Spark Streaming", Databricks Engineering Blog. January 15, 2015. http://bit.ly/2HqH614.

  • [Dean2004] Dean, Jeff, und Sanjay Ghemawat. "MapReduce: Simplified Data Processing on Large Clusters", OSDI San Francisco, Dezember 2004. http://bit.ly/15LeQej.

  • [Doley1987] Doley, D., C. Dwork, und L. Stockmeyer. "On the Minimal Synchronism Needed ...

Get Stream Processing mit Apache Spark now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.