## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

(428)

Recall the Laplacian of $\mathrm{\Phi }$ in spherical coordinates, i.e.,

${\nabla }^{2}\mathrm{\Phi }=\frac{1}{{r}^{2}}\frac{\partial }{\partial r}\left({r}^{2}\frac{\partial \mathrm{\Phi }}{\partial r}\right)+\frac{1}{{r}^{2}\mathrm{sin}\theta }\frac{\partial }{\partial \theta }\left(\mathrm{sin}\theta \frac{\partial \mathrm{\Phi }}{\partial \theta }\right)+\frac{1}{{r}^{2}{\mathrm{sin}}^{2}\theta }\frac{{\partial }^{2}\mathrm{\Phi }}{\partial {\varphi }^{2}}\left(\mathrm{Laplacian}\mathrm{in}\mathrm{spherical}\mathrm{coord}.\right)$ (429)

(429)

For spherical symmetry, Eq. (429) depends on $r$ only, i.e.,

${\nabla }^{2}\mathrm{\Phi }=\frac{1}{{r}^{2}}\frac{\partial }{\partial r}\left({r}^{2}\frac{\partial \mathrm{\Phi }}{\partial r}\right)\left(\mathrm{spherical}\mathrm{symmetry ...}$

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required