Appendix EDifferential Geometry in Curvilinear Coordinates

A three-dimensional curve in a rectangular coordinate system (x, y, z) can be represented by the locus of the end point of the position vector r in Figure E.1.

(E.1)bold-italic r bold-italic equals x bold-italic i plus y bold-italic j plus z bold-italic k

Let s be the arc length along the space curve, then

(E.2)StartFraction d Over italic d s EndFraction left-parenthesis bold-italic r right-parenthesis equals StartFraction italic d x Over italic d s EndFraction bold-italic i plus StartFraction italic d y Over italic d s EndFraction bold-italic j plus StartFraction italic d z Over italic d s EndFraction bold-italic k

From the dot product of the foregoing derivative with itself we get

(E.3)StartFraction d Over italic d s EndFraction left-parenthesis bold-italic r right-parenthesis dot StartFraction d Over italic d s EndFraction left-parenthesis bold-italic r right-parenthesis equals left-parenthesis StartFraction italic d x Over italic d s EndFraction right-parenthesis squared plus left-parenthesis StartFraction italic d y Over italic d s EndFraction right-parenthesis squared plus left-parenthesis StartFraction italic d z Over italic d s EndFraction right-parenthesis squared
(E.4)left-parenthesis italic d s right-parenthesis squared equals left-parenthesis italic d x right-parenthesis squared plus left-parenthesis italic d y right-parenthesis squared plus left-parenthesis italic d z right-parenthesis squared

Hence,

This shows that dr/ds is a unit vector. The vector Δrs in Figure E.1 becomes the vector tangent to the curve at the point P as Δs approaches zero. Therefore, t = dr/ds is a unit tangent vector. The vector

(E.6)StartFraction d Over italic d t EndFraction left-parenthesis bold-italic r right-parenthesis equals StartFraction d Over italic d s EndFraction left-parenthesis bold-italic r right-parenthesis StartFraction italic d s Over italic d t EndFraction

is also a tangent vector in the direction dr/ds but is not necessarily a unit vector.

E.1 Curvature

By Eq. (E.5)

StartFraction d Over italic d s EndFraction left-parenthesis bold-italic r right-parenthesis period StartFraction d Over italic d s EndFraction left-parenthesis bold r right-parenthesis equals bold-italic t bold-italic period bold-italic t equals 1

Figure E1 Position vectors on a curve.

(E.7)

where prime denotes differentiation ...

Get Structural Stability Theory and Practice now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.