
J-unitary Matrices for Algebraic Approximation
219
(3) The step is terminated by a final export procedure of {go3+, go3-, go2+, go2-,ga3, gs2}.
This terminates the construction. The resulting non-singular augmentation then looks
as follows:
level 1: {go3+, go3-, go2+, go2-, go1+, go1-, g83, gs2, g,l).
level 2:
{go3+,goa-,go2+,g02-,
f021+, f021-, f022+,
fo22-,ga3,gs2, fsl,
fs3, fs2}.
level 3: {go3+, go3-, f02+, f02-, e03+, e03-, ga3, f83, es3}.
This in turn adds up to the theorem:
Theorem
1 A strict (minimal) augmentation of a teachability space to a non-singular
space allways exists.
Example 1: Let's consider ...