We will proceed with the recipe as follows:
- We will begin by loading the necessary libraries and starting a graph session:
import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import random import os import pickle import string import requests import collections import io import tarfile import urllib.request import text_helpers from nltk.corpus import stopwords sess = tf.Session()
- Now we will declare the model parameters. The embedding size should be the same as the embedding size we used to create the preceding CBOW embeddings. Use the following code to do this:
embedding_size = 200 vocabulary_size = 2000 batch_size = 100 max_words = 100 stops = stopwords.words('english')
- We will load and transform ...