O'Reilly logo

Toward Analytical Chaos in Nonlinear Systems by Albert C. J. Luo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Index

  1. Analytical bifurcation tree
  2. Analytical solution
  3. Arbratrary periodical forcing
  4. Asymptotically stable equilibrium
  5. Asymptotically unstable equilibrium
  6. Autonomous dynamical systems
  7. Autonomous nonlinear system
  8. Autonomous time-delayed nonlinear system
  9.  
  10. Bifurcation
  11. Bifurcation of periodic flow
  12. Bifurcation of periodic motion
  13. Bifurcation of period-m flow
  14. Bifurcation of period-m motion
  15. Bifurcation point
  16. Bifurcation value
  17.  
  18. Center
  19. Center subspace
  20. Center manifold
  21. Complex eigenvalues
  22. Continuous dynamical system
  23. Circular equilibrium
  24. Critical point
  25. Critical equilibrium
  26.  
  27. Derative
  28. Degenrate equilibrium
  29. Decresasing saddle
  30. Differentiable manifold
  31. Dynamical system
  32.  
  33. Eigenspace
  34. Eigenvalue
  35. Equilibrium
  36. Equilibrium point
  37.  
  38. Flow
  39. Fourier Series Solutions
  40. Free vibration systems
  41. Frequency-amplitude characteristics
  42.  
  43. Generalized coordinite transformation
    1. for periodic flow
    2. for periodic motion
    3. for period-m flow
    4. for period-m motion
  44.  
  45. Homeomorphism
  46. Hopf bifurcation
  47. Hyperbolic equilibrium
  48. Hyperbolic points
  49. Hyperbolic-spiral stable chaos
  50. Hyperbolic-spiral unstable chaos
  51. Hyperbolic stable chaos
  52. Hyperbolic unstable chaos
  53.  
  54. Integral
  55. Incresasing saddle
  56. Invariant circle
  57. Invariant subspace
  58. Cr invariant manifold
  59.  
  60. Jacobian matrix
  61. Jacobian determinant
  62.  
  63. Linearized system
  64. Lipschitz condition
  65. Lipschitz constant
  66. Local stable invariant manifold
  67. Local stable manifold
  68. Local unstable invariant manilfod
  69. Local unstable manifold
  70.  
  71. Manifold
  72.  
  73. Nonautonomous dynamical systems
  74. Nonautonomous nonlinear systems
  75. Nonautonomous ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required