Corollary 5.10

Considering linear regular uncertain distribution such as ℒ(ab) for the uncertain variables of Theorem 5.6, the following deterministic model is obtained instead of the model (5.29).

maxγ,ur,vii=1mp¯i+r=1sw¯rsubject toi=1mpi+r=1swr=1i=1mp¯ibx˜ioax˜ior=1sw¯ray˜roby˜ro+i=1mpiax˜ior=1swrby˜ro0r=1swr1αay˜rj+αby˜rji=1mpiαax˜ij+1αbx˜ijj=1,2,,n0<p¯ipii=1,2,,m0<w¯rwrr=1,2,,s

si192_e  (5.31)

Proof. According to the inverse of the linear uncertain distribution, the following form of model (5.29) is obtained.

θ=maxγ,ur,viγsubject toi=1mviγbx˜ioax˜io+ax˜ior=1surγay˜roby˜ro+by˜ro0r=1sur1αay˜rj+αby˜rji=1mviαa

Get Uncertainty in Data Envelopment Analysis now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.