INTEGRABLE RESOLVENT OPERATORS FOR AN ABSTRACT VOLTERRA EQUATION IN HILBERT SPACE

R. W. Carr

Department of Mathematics

St. Cloud State University

St. Cloud, Minnesota

DOI: 10.1201/9781003420026-15

We study the asymptotic behavior of the solution to the initial value problem

y '(t) +  0 t [ d + a(t - s) ] L y ˙ ( s ) ds =  f ( t ) ,  t > 0 (1)

y '(t) =  y 0  ε H ,

(‘= d/dt) where L is a positive self-adjoint linear operator defined on a dense subspace D of the Hilbert space H. The kernel d + a(t) satisfies

{ a ε L l 0 c 1 ( + , ¯ + ) , ( + = ( 0 , ) , ¯ + = [ 0 , ) ) ;  a is nonincreasing and convex with a  ( ) = 0 < a ( 0 + )

Get Volterra and Functional Differential Equations now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.