
322

Chapter 9

In this chapter:
• The Application Kit

and Messages
• Application-Defined

Messages9
Messages and Threads 9.

Several years ago Be, Inc. set out to develop a new operating system—one they
eventually dubbed the Media OS. The goal was to create an operating system that
could keep up with the computationally intensive demands of media profession-
als who routinely worked with complex and resource-hungry graphics and audio
files. From the start, Be knew that threads and messages would be of paramount
importance. A multithreaded environment means that a single application can
simultaneously carry out multiple tasks. On a single-processor machine, CPU idle
time is reduced as the processor services one thread followed by another. On a
multiprocessor machine, task time really improves as different CPUs can be dedi-
cated to the servicing of different threads.

Threads can be considered roadways that allow the system to communicate with
an object, one object to communicate with another object, and even one applica-
tion to communicate with another application. Continuing with the analogy, mes-
sages are the vehicles that carry the information, or data, that is to be passed from
one entity to another. Chapter 4, Windows, Views, and Messages, introduced mes-
sages, and seldom since then have a couple of pages passed without a direct or
indirect reference to messages. In this chapter, I’ll formally explain of how mes-
sages and threads work. In doing so, you’ll see how your application can create its
own messages and use them to let one object tell another object what to do. You'll
see how sending a message can trigger an object to perform some desired action.
You’ll also see how a message can be filled with any manner of data before it’s
sent. Once received, the recipient object has access to any and all of the data held
within the message.



The Application Kit and Messages 323

The Application Kit and Messages
Servers are background processes that exist to serve the basic, low-level needs of
applications. The BeOS end user makes indirect use of servers every time he or
she runs a Be application. As a Be programmer, you make more direct use of serv-
ers by using the BeOS application programming interface. The classes of the API
are organized into the software kits that have been discussed at length throughout
this book. The most basic, and perhaps most important, of these kits is the Appli-
cation Kit. Among the classes defined in this kit is the BApplication class. Your
application begins by creating a BApplication object. When an instance of that
class is created, your application connects to the Application Server, and can make
use of all the services provided by that server. Tasks handled by the Application
Server include the provision of windows, the handling of the interaction between
these windows, and the monitoring and reporting of user events such as mouse
button clicks. In short, the Application Server, and indirectly the classes of the
Application Kit, allow the system to communicate with an application. This com-
munication takes place via messages that travel by way of threads.

The classes of the Application Kit (shown in Figure 9-1) fall into the four catego-
ries listed below. Of these groupings, it’s messaging that’s the focus of this chapter.

Messaging
The Application Server delivers system messages to an application. Addition-
ally, an application can send application-defined messages to itself (the pur-
pose being to pass information from one object to another). The Application
Kit defines a number of message-related classes that are used to create,
deliver, and handle these messages. Among these classes are: BMessage,
BLooper, and BHandler.

BApplication class
An application’s single BApplication object is the program’s interface to the
Application Server.

BRoster class
The system keeps a roster, or list, of all executing applications. Upon the
launch of your application, a BRoster object is automatically created. In the
event that your program needs to communicate with other running applica-
tions, it can do so by accessing this BRoster object.

BClipboard class
The system keeps a single clipboard as a repository for information that can
be shared—via copying, cutting, and pasting—between objects in an applica-
tion and between distinct applications. Upon launch, your application auto-
matically creates a BClipboard object that is used to access the systemwide
clipboard.



324 Chapter 9: Messages and Threads

Messaging

The Application Kit defines the classes that allow an application to be multi-
threaded. While threads run independently, they do need a means of communicat-
ing with one another. So the Application Kit also defines classes that allow for the
creation and delivery of messages.

The BMessage class is used to create message objects. A single message can con-
tain as little or as much information as appropriate for its purpose. Once created
within one thread, a message can be delivered to the same thread, a different
thread in the same application, or to a thread in a different application altogether.

How a thread obtains a message and then handles that message is determined by
the Application Kit classes BLooper and BHandler. A BLooper object runs a mes-
sage loop in a thread. This message loop receives messages and dispatches each
to a BHandler object. The handler object is responsible for handling the message
as appropriate for the message type. Notice in Figure 9-1 that the BLooper class is
derived from the BHandler class. This means that a looper object is also a han-
dler object, and can thus pass a message to itself. While this may sound self-
defeating, it actually serves as a quite useful mechanism for initiating and carrying
out a task from within one object, such as a window (which, as shown in
Figure 9-1, is both a looper and a handler). Throughout this chapter you’ll see sev-
eral examples of the creating of messages and the dispatching of these messages
both by the object that created them and by other objects.

Figure 9-1. The inheritance hierarchy for the Application Kit

Application Kit

Other Be Kit

BRoster

BRoster

BObjects
Support Kit

BHandler

BMessage

BMessenger

BMessageFiller

BMessageQueue

BWindow
Interface Kit

BLooper BApplication



The Application Kit and Messages 325

Because an application is multithreaded, more than one thread may attempt to
access the same data. For read-only data (data that can’t be written to or altered),
that’s not a problem. For read-write data, a problem could exist; if both accessing
objects try to alter the same data at the same time, the result will be at best unpre-
dictable and at worst disastrous. To prevent simultaneous data access, the BeOS
allows for the locking of data. When one thread is about to access data, it can first
lock it. While locked, other threads are prevented access. When a thread encoun-
ters locked data, it finds itself waiting in queue. Only after the thread that locked
the data later unlocks it will other threads get a chance at access.

In many instances, the locking and unlocking of data is handled by the system.
For instance, when a window receives a message (when a message enters the win-
dow thread's message loop), the BWindow object is locked until the message is
handled. From Chapter 4 you know that a window object has a host of characteris-
tics, such as size, that can be altered at runtime. If the window wasn’t locked dur-
ing message handling, and the message indicated that, say, the window should be
resized, the possibility exists for a second such message to arrive at the same time
and also attempt to change the values of the window object’s screen coordinates.

Occasionally there’ll be cases where your application is responsible for the lock-
ing and unlocking of data. For such occasions, the object to be locked will have
Lock() and Unlock() member functions in its class definition. This chapter pro-
vides one such instance of manually locking and unlocking an object. If your pro-
gram wants to add data to the clipboard (as opposed to the user placing it there
by a copy or cut), it should first lock the clipboard (in case the user does in fact
perform a copy or cut while your program is in the process of placing data on the
clipboard!). This chapter’s ClipboardMessage project shows how this is done.

Application Kit Classes

The previous section described the Application Kit classes directly involved with
messages—the BMessage, BLooper, and BHandler classes. Other Application Kit
classes, while not as important in terms of messaging, are still noteworthy. Be sug-
gests that the collective message-related classes make up one of four Application
Kit categories. The other three each contain a single class—BApplication,
BRoster, and BClipboard class. Those three classes are discussed next.

BApplication class

By now you’re quite familiar with the notion that every program must create a sin-
gle instance of the BApplication class (or of an application-defined
BApplication-derived class). The BApplication class is derived from the
BLooper class, so an object of this class type runs its own message loop. A pro-
gram’s application object is connected to the Application Server, and system



326 Chapter 9: Messages and Threads

messages sent to the program enter the application object’s message loop. If a
message is a system message (such as a B_QUIT_REQUESTED), it is eventually han-
dled by a BApplication hook function (such as QuitRequested()). The
BApplication class defines a MessageReceived() function that augments the
BHandler version of this routine. If your program wants the application object to
handle application-defined messages, it should override and augment the
BApplication version MessageReceived(). To do that, your program defines a
message constant, declares MessageReceived() in the BApplication-derived
class declaration, and implements MessageReceived():

#define   MY_APP_DEFINED_MSG       'mymg'

class MyAppClass : public BApplication {

   public:
                       MyAppClass();
      virtual void     MessageReceived(BMessage* message);
};

void MyAppClass::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case MY_APP_DEFINED_MSG:
         // handle this type of message
         break;

      default:
         inherited::MessageReceived(message);
         break;
   }
}

Previous example projects haven’t made direct use of MessageReceived() in the
application object. This chapter’s AlertMessage project (discussed in the “Message-
posting example project” section) provides a specific example.

Like the BApplication class, the BWindow class is derived from
BLooper. So, like an application object, a window object runs a
message loop. And, again like an application object, a window
object has a connection to the Application Server—so a window can
be the recipient of system messages. Examples of these interface sys-
tem messages include B_QUIT_REQUESTED, B_ZOOM, B_MOUSE_DOWN,
B_KEY_DOWN, and B_WINDOW_RESIZED messages.



The Application Kit and Messages 327

BRoster class

The system, of course, keeps track of all running applications. Some of the infor-
mation about these processes is stored in a roster, or table, in memory. Much of
this information about other executing applications is available to your executing
application. Your program won’t access this roster directly, though. Instead, it will
rely on the be_roster global variable. When an application launches, an object of
the BRoster class is automatically created and assigned to be_roster.

To garner information about or communicate via messages with another applica-
tion, you simply refer to be_roster and invoke one of the BRoster member
functions. Some of the important BRoster functions and their purposes include:

GetAppList()
Returns an identifier for each running application.

GetAppInfo()
Provides information about a specified application.

ActivateApp()
Activates an already running application by bringing one of its windows to the
front and activating it.

Broadcast()
Broadcasts, or sends, a message to all currently running applications.

IsRunning()
Determines if a specified application is currently running.

Launch()
Locates an application on disk and launches it.

FindApp()
Locates an application (as Launch() does), but doesn’t launch it.

One of the ways be_roster identifies an application is by the program’s signa-
ture (presenting you with another reason to make sure your application’s signa-
ture is unique—as mentioned in Chapter 2, BeIDE Projects). The very simple Ros-
terCheck example project in this chapter takes advantage of this in order to see
how many instances of the RosterCheck program are currently running. Ros-
terCheck allows itself to be launched more than once, but not more than twice.

When creating an application that is to allow for multiple instances
of the program, you need make sure that the application flags field
resource is set to multiple launch. Chapter 2 discusses this resource
and how to set it. In short, you double-click on the project’s
resource file to open it, then click the Multiple Launch radio button
in the Application Flags section.



328 Chapter 9: Messages and Threads

The roster keeps track of each application that is running, including multiple
instances of the same application. To check the roster and make use of the results,
just a few lines of code in the application constructor are all that’s needed:

MyHelloApplication::MyHelloApplication()
    : BApplication("application/x-dps-twoapps")
{
   BList  theList;
   long   numApps;

   be_roster->GetAppList("application/x-dps-twoapps", &theList);
   numApps = theList.CountItems();

   if (numApps > 2) {
      PostMessage(B_QUIT_REQUESTED);
      return;
   }

   BRect  aRect;

   aRect.Set(20, 30, 220, 130);
   fMyWindow = new MyHelloWindow(aRect);
}

When passed an application signature and a pointer to a BList object, the
BRoster function GetAppList() examines the roster and fills in the list object
with an item for each currently running application with the matching signature.
To know what to do next, you need at least a passing familiarity with the BList
class, a class not yet mentioned in this book.

The BList class is a part of the Support Kit, which defines datatypes, classes, and
utilities any application can use. An instance of the BList class is used to hold a
list of data pointers in an orderly fashion. Keeping data in a BList is handy
because you can then use existing BList member functions to further organize or
manipulate the data. The partial listing of the BList class hints at the things a list
can do:

class BList {

public:
             BList(int32 itemsPerBlock = 20);
             BList(const BList&);
   virtual   ~BList();

   BList     &operator=(const BList &from);
   bool      AddItem(void *item);
   bool      AddItem(void *item, int32 atIndex);
   bool      AddList(BList *newItems);
   bool      AddList(BList *newItems, int32 atIndex);
   bool      RemoveItem(void *item);
   void      *RemoveItem(int32 index);
   bool      RemoveItems(int32 index, int32 count);



The Application Kit and Messages 329

   bool      ReplaceItem(int32 index, void *newItem);
   void      MakeEmpty();

   void      SortItems(int (*cmp)(const void *, const void *));
   bool      SwapItems(int32 indexA, int32 indexB);
   bool      MoveItem(int32 fromIndex, int32 toIndex);

   void      *ItemAt(int32) const;
   void      *ItemAtFast(int32) const;
   void      *FirstItem() const;
   void      *LastItem() const;
   void      *Items() const;

   bool      HasItem(void *item) const;
   int32     IndexOf(void *item) const;
   int32     CountItems() const;
   bool      IsEmpty() const;

   ...
}

The pointers that are stored in a list can reference any type of data, so the
BRoster function GetAppList() stores a reference to each running application
with the specified signature. After calling GetAppList() you can find out how
many instances of the application in question are currently running—just invoke
CountItems() to see how many items are in the list. That’s exactly what I do in
the RosterCheck project:

BList  theList;
long   numApps;

be_roster->GetAppList("application/x-dps-twoapps", &theList);
numApps = theList.CountItems();

After the above code executes, numApps holds the number of executing instances
of the RosterCheck program (including the instance that’s just been launched and
is executing the above code). The following code limits the number of times the
user can execute RosterCheck to two; if you try to launch RosterCheck a third
time, the program will immediately quit:

if (numApps > 2) {
   PostMessage(B_QUIT_REQUESTED);
   return;
}

A more well-behaved version of RosterCheck would post an alert explaining why
the program quit. It would also have some reason for limiting the number of
instances of the program—my arbitrary limit of two exists so that I can demon-
strate that the roster in general, and a BRoster member function in particular,
work!



330 Chapter 9: Messages and Threads

BClipboard class

The previous section described the system’s application roster, the be_roster glo-
bal object used to access the roster, and the BRoster class that defines the type of
object be_roster is. The clipboard works in a similar vein: there’s one system
clipboard, it’s accessed by a be_clipboard global object, and that object is of the
Be class BClipboard.

Objects of some class types make use of be_clipboard without any intervention
on your part. For instance, in Chapter 8, Text, you saw that a BTextView object
automatically supports the editing functions cut, copy, paste, and select all. When
the user cuts text from a BTextView object, the object places that text on the sys-
tem clipboard. Because this clipboard is global to the system, the cut data
becomes available to both the application from which the data was cut and any
other application that supports the pasting of data.

As you may suspect, when editing takes place in a BTextView object, messages
are involved. In particular, the BTextView object responds to B_CUT, B_COPY,
B_PASTE, and B_SELECT_ALL messages. The B_CUT and B_COPY messages add to
the clipboard the currently selected text in the text view object that's the focus
view. The B_PASTE message retrieves text from the clipboard and pastes it to the
insertion point in the text view object that's the focus view. If you want your pro-
gram to manually force other text to be added to the clipboard, or if you want
your program to manually retrieve the current text from the clipboard without
pasting it anywhere, you can do so by directly accessing the clipboard.

To fully appreciate how to work with the clipboard, you’ll want to read this chap-
ter’s “Working with BMessage Objects” section. In particular, the “Data, messages,
and the clipboard” subsection discusses messages as they pertain to the clipboard,
and the “Clipboard example project” subsection provides an example of adding
text directly to the clipboard without any intervention on the part of the user.

Application-Defined Messages
Up to this point, you’ve dealt mostly with system messages—messages generated
and dispatched by the system. The Message Protocols appendix of the Be Book
defines all the system messages. In short, system messages fall into the following
categories:

Application system messages
Such a message concerns the application itself, and is delivered to the
BApplication object. The application handles the message by way of a hook
function, as described in Chapter 4. B_QUIT_REQUESTED is one application
message with which you’re familiar.



Application-Defined Messages 331

Interface system messages
Such a message concerns a single window, and is delivered to a BWindow
object. The window handles the message by way of a hook function, or, if the
message affects a view in the window, passes it on to the BView object, which
handles it by way of a hook function. A B_WINDOW_ACTIVATED message is an
example of an interface message that would be handled by a window, while a
B_MOUSE_DOWN message is an example of an interface message that would be
passed on to a view (the view the cursor was over at the time of the mouse
button click) for handling.

Standard messages
Such a message is produced by either the system or application, but isn’t han-
dled by means of a hook function. The editing messages covered in
Chapter 8B_CUT, B_COPY, B_PASTE, and B_SELECT_ALLare examples of
standard messages. When a user selects text in a BTextView object and
presses Command-x, the affected window generates a B_CUT message that is
sent to the text view object. That object automatically handles the text cutting
by invoking the BTextView function Cut().

The system and standard messages are important to making things happen in your
application—they allow the user to interact with your program. But these mes-
sages are only a part of the powerful Be messaging system. Your application is
also free to define its own message constants, create messages of these applica-
tion-defined types, add data to these messages, and then pass the messages on to
other object or even other applications.

Message Handling

An application-defined message can be issued automatically in response to a user
action such as a menu item selection or a control activation. Your application can
also issue, or post, a message explicitly without any user intervention. Before
going into the details of application-defined messages, a quick review of system
messages will minimize confusion between how these different types of messages
are handled.

System message handling

When an application receives a system message, it is dispatched by sending the
message to the affected BHandler object. That object then invokes a hook func-
tion—a function specifically implemented to handle one particular type of system
message.

A system message is the result of an action external to the application. The mes-
sage is generated by the operating system, and is delivered to an application



332 Chapter 9: Messages and Threads

object or a window object. That object, or an object the message is subsequently
passed to, invokes the appropriate hook function.

As an example, consider a mouse button click. The click of a mouse button
inspires the Application Server to generate a B_MOUSE_DOWN message. The server
passes this message to the affected window (the window under the cursor at the
time of the mouse button click). A BWindow object is a looper, so the window has
its own thread that runs a message loop. From this loop, the message is dis-
patched to a handler, which in this example is the affected view (the view under
the cursor at the time of the mouse button click). A BView object is a handler, so it
can be the recipient of a passed message. A handler object in general, and a
BView-derived object in particular, has its own hook functions (either inherited
from the BView class or overridden). For a B_MOUSE_DOWN message, the pertinent
function the view invokes is the BView hook function MouseDown(). Figure 9-2
illustrates system message dispatching for this situation.

In Figure 9-2, you see that the window invokes a function named
DispatchMessage(). This is a BLooper function that BWindow augments (over-
rides in order to add window-specific functionality, and then invokes the inher-
ited version as well). DispatchMessage() is responsible for forwarding a system

Figure 9-2. A message moves from the Application Server to a view

BWindow
object

MessageReceived()

BLooper

B_MOUSE_DOWN

BHandler

Application
server

BWindow
object

DispatchMessage()
B_MOUSE_DOWN



Application-Defined Messages 333

message to the affected view. While your application can override
DispatchMessage(), it should seldom need to. Similarly, while
DispatchMessage() can be invoked directly, it’s best to leave the timing of the
call to the system. Leave it to the looper object (whether the application or a win-
dow) to automatically use this message-forwarding routine as it sees fit. In this
example, DispatchMessage() will make sure that the BView object’s version of
the hook function MouseDown() is invoked.

Chapter 4 provided a variety of examples that demonstrated system message han-
dling, including B_MOUSE_DOWN and B_KEY_DOWN messages. If you refer back to
any of these examples, you’ll see that each uses a hook function.

Application-defined message handling and implicitly generated messages

An application-defined message isn’t handled by means of a hook function. The
very fact that your application defines the message means that no pre-existing
hook function could be included in whatever BHandler-derived class the recipi-
ent object belongs to. Instead, an application-defined message is always dis-
patched by way of a call to MessageReceived(). The looper object that receives
the message passes it to a handler object, which uses its version of
MessageReceived() to carry out the message’s action. That leads to the distinc-
tion that a system message is usually handled by a hook function (some system-
generated messages, such as the standard messages resulting from text edits, need
to be handled by a version of MessageReceived()), while an application-defined
message is always handled by a MessageReceived() function.

You’ve seen several examples of how an application works with application-
defined messages—most notably in the chapters that deal with controls and menus
(Chapter 6, Controls and Messages, and Chapter 7, Menus). For instance, a pro-
gram that implements message handling through a menu item first defines a mes-
sage constant:

#define   MENU_ADV_HELP_MSG     'help'

The program then includes this message constant in the creation of a new
BMessage object—as is done here as part of the process of creating a new
BMenuItem:

menu->AddItem(new BMenuItem("Advanced Help",
                            new BMessage(MENU_ADV_HELP_MSG)));

Finally, the message constant appears in a case section in the BWindow object’s
MessageReceived() function—as in this snippet:

void MyHelloWindow::MessageReceived(BMessage* message)
{
   switch (message->what) {



334 Chapter 9: Messages and Threads

      case MENU_ADV_HELP_MSG:
         OpenHelpWindow(MENU_ADV_HELP_MSG);
         break;

      // other case sections here

      default:
         BWindow::MessageReceived(message);
   }
}

Like a system message, an application-defined message relies on the BLooper-
inherited function DispatchMessage() to transfer the application-defined mes-
sage from the looper to the handler. Again, your code shouldn’t ever have to rede-
fine DispatchMessage() or invoke it directly. As shown in Figure 9-3, in this
example the BWindow object is both the looper and handler. The menu item–
generated message is placed in the window’s message loop, and the window
object sends the message to itself and invokes the window’s version of
MessageReceived() via the BWindow version of DispatchMessage().

While the window generates the message and delivers it to itself, the
Application Server may play a role in the act. This is most evident
for a message generated by a menu item or control. In each case,
the Application Server inserts when data into the message so the
application knows at what instant the event (generally a mouse but-
ton click) that initiated the message occurred.

Figure 9-3. A message moves from a window back to that window

BWindow
object

MessageReceived()

BLooper
BHandler

Application
server

DispatchMessage()
MENU_ADV_HELP_MSG



Application-Defined Messages 335

Application-defined message handling and explicitly generated messages

A user request, such as menu item selection or control activation, is one way an
application-defined message gets generated and MessageReceived() gets
invoked. In this case, the message is created and passed automatically. You may
encounter other instances where it’s appropriate for one object in a program to
receive information, or take some action, based on circumstances other than a user
action. To do that, your program can have an object (such as a window) create a
message object, and then have that message posted to a looper object.

As an example, consider a window that needs to pass some information to the
application. Perhaps the window is performing some lengthy task, and it wants the
application to know when the task is completed. The window could create a
BMessage object and send it to the application. In a simple case, the arrival of the
message might be enough information for the application. However, a message
can contain any amount of information, so a more sophisticated example might
have the message holding information about the completed task, such as the
length of time it took to execute the task.

When PostMessage() is called, the specified message is delivered to the looper
the function is called upon. You’ve seen this in all of the example projects to this
point. When the user clicks on a window’s close button, the window’s
QuitRequested() hook function is invoked. In that function, the application
object invokes PostMessage(). Here the application object acts as a looper to
post the message, then acts as a handler to dispatch the message to its
MessageReceived() function:

bool MyHelloWindow::QuitRequested()
{
   be_app->PostMessage(B_QUIT_REQUESTED);

   return(true);
}

A message posted to a looper via a call to PostMessage() gets delivered, or dis-
patched, via the DispatchMessage() function. When it comes time to send a
message, the sender (the looper object) calls PostMessage(). PostMessage() in
turn calls DispatchMessage(). In the above version of QuitRequested(), the
message posted is a Be-defined message, but that needn’t be the case—it could be
an application-defined one. In such a case, an object such as a window would cre-
ate the message using new and the BMessage constructor (as discussed ahead). If
the message was to be delivered to the application, the message could then be
posted just as it was in QuitRequested(). Figure 9-4 illustrates the process.



336 Chapter 9: Messages and Threads

Working with BMessage Objects

The preceding section served as an introduction to how an application might cre-
ate a message object and send it to another object. That section was just that—an
introduction. Here you’ll see the details—and code—for creating, posting, and
handling BMessage objects.

Creating a message

The BMessage constructor has a single parameter—a uint32 value represents the
new message object’s command constant. System message command constants
always begin with B_, as in B_QUIT_REQUESTED and B_MOUSE_DOWN, so to be
quickly recognized as an application-defined message, your application-defined
command constants should begin with any other combination of characters. Addi-
tionally, each system message’s command constant is defined to be a four-charac-
ter string that consists of only uppercase characters and, optionally, underscore
characters. Defining an application-defined message by any other scheme (such as
using all lowercase characters) ensures that the message won’t be misinterpreted
as a system message. Here’s an example of the creation of a BMessage object:

#define    WAGER_MSG    'wger'

BMessage   firstRaceWagerMsg = new BMessage(WAGER_MSG);

Figure 9-4. A message moves from a window to the application

BWindow
object

new BMessage()
MY_MESSAGE

BApplication
object

new BMessage()
MY_MESSAGE

BLooper

DispatchMessage()
MY_MESSAGE

BApplication
object

BHandler

MessageReceived()



Application-Defined Messages 337

The BMessage constructor sets the what data member of the new message object
to the value of the command parameter. As you’ve seen, it’s the value of what
that’s used by MessageReceived():

void MyHelloWindow::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case WAGER_MSG:
         // handle message;

      ...
   }
}

A message always has a command constant, and it may include data. Regardless of
whether a message holds data, it’s posted to a looper, and dispatched to a han-
dler, in the same way. The firstRaceWagerMsg consists of nothing more than a
command constant, but it is nonetheless a complete message. So before increas-
ing the complexity of message-related discussions by examining how data is
added to and extracted from a message object, let’s use the simple message to see
how a message is posted to a looper and then dispatched to a handler.

Posting and dispatching a message

Once created, a message needs to be placed in the message loop of a looper’s
thread and then delivered to a handler. The looper is an object of the BLooper
class or an object of a BLooper-derived class, such as the application object or a
window object. The handler is an object of the BHandler class or an object of a
BHandler-derived class, such as, again, the application object or a window object
(refer back to Figure 9-1 to see the pertinent part of the BeOS API class hierar-
chy). A call to PostMessage() places a message in the queue of the looper
whose PostMessage() function is called, and optionally specifies the handler to
which the message is to be delivered. This BLooper member function has the fol-
lowing parameter list:

status_t PostMessage(BMessage  *message,
                     BHandler  *handler,
                     BHandler  *replyHandler = NULL)

The first parameter, message, is the BMessage object to post. The second parame-
ter, handler, names the target handler—the BHandler object to which the mes-
sage is to be delivered. The replyHandler, which is initialized to NULL, is of
interest only if the target handler object is going to reply to the message (more
typically the target handler simply handles the message and doesn’t return any
type of reply). While the poster of the message and the target of the message don’t
have to be one and the same, they can be—as shown in this snippet (read the



338 Chapter 9: Messages and Threads

“Menu Items and Message Dispatching” sidebar for a look at how previous exam-
ple projects have been doing this):

#define    WAGER_MSG    'wger'

BMessage   firstRaceWagerMsg = new BMessage(WAGER_MSG);

theWindow->PostMessage(firstRaceWagerMsg, theWindow);

A posted message is placed in the looper’s message queue, where it takes its place
behind (possibly) other messages in the queue in preparation to be delivered to
the target handler object. The looper object continually checks its queue and calls
the BLooper function DispatchMessage() for the next message in the queue.
When your posted message becomes the next in the queue, the looper invokes
DispatchMessage() to pass the message to the target handler. The effect is for
the posted message to reach the target handler’s MessageReceived() function. If
that routine has a case label that matches the message’s what data member, the
handler acts on the message. Since the above code names a window as both the
looper and the target handler, the window must have a MessageReceived()
function set up to take care of a message of type WAGER_MSG (if it doesn’t, the pro-
gram won’t fail—the posted message simply isn’t acted upon):

void MyHelloWindow::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case WAGER_MSG:
         // handle message;

      ...
   }
}

The BLooper class provides another way to call PostMessage()—a sort of short-
hand method that in many cases saves you the (admittedly simple) step of creat-
ing a BMessage object. Instead of passing a BMessage object as the first
PostMessage() parameter, simply pass the command constant that represents the
type of message to be posted. Here’s how a WAGER_MSG could be posted:

theWindow->PostMessage(WAGER_MSG, theWindow);

When a command constant is passed in place of a BMessage object, the
PostMessage() function takes it upon itself to do the work of creating the
BMessage object and initializing the new object’s what data member to the value
of the passed command constant. This method of invoking PostMessage() is
acceptable only when the message to be created contains no data (other than the
command constant itself). If a posted message object is to include additional data,
then PostMessage() won’t know how to add it to the newly created message



Application-Defined Messages 339

Menu Items and Message Dispatching
The code in this section shows that the poster of the message and the target of
the message can be the same object. You’ve already seen this situation several
times when working with menus, though the comparison may not be immedi-
ately noticeable. When a new menu item is created and added to a menu, a
new BMessage object is created and associated with the new menu item:

#define    MENU_OPEN_MSG   'open'

BMenu      *menu;
BMenuItem  *menuItem;

menu = new BMenu("File");
menuItem = new BMenuItem("Open", new BMessage(MENU_OPEN_MSG));
menu->AddItem(menuItem);

When the user selects the Open menu item, the MENU_OPEN_MSG message is
sent to the message loop of the window that holds the menu item. No call to
PostMessage() is needed, as the system implicitly dispatches the message by
way of a call to DispatchMessage(). By default, the BMenuItem constructor
has made this same window the handler of this message, so the message typ-
ically gets dispatched to the MessageReceived() function of the window
(though it could end up going to a hook function if the menu item message
was a system message such as B_QUIT_REQUESTED):

void MyHelloWindow::MessageReceived(BMessage* message)
{

   switch(message->what)
   {
      case MENU_OPEN_MSG:
         // open a file;
         break;

      ...
   }
}

While the system takes care of menu handling without your code needing to
include an explicit call to PostMessage(), the effect is the same.

While the target handler for a menu item-associated message is the window
that holds the menu, you can change this default condition. A BMenuItem is
derived from the BInvoker class (a simple class that creates objects that can
be invoked to send a message to a target), so you can call the BInvoker func-
tion SetTarget() to make the change. After the following call, an Open menu
item selection will send a MENU_OPEN_MSG to the application’s version of
MessageReceived() rather than to the window’s version of this function:

menuItem->SetTarget(be_app);



340 Chapter 9: Messages and Threads

object. Working with more complex messages—messages that hold data—is the
subject of the next section.

Message-posting example project

The WindowMessage1 project demonstrates one way to stagger windows. Moving
windows about the screen is a trivial task that doesn’t necessarily require the use
of messages. That’s all the better reason to choose this chore for a message-related
example—it lets me concentrate on working with messages rather than on solving
a difficult problem!

A new WindowMessage1 window has a File menu that consists of a single item: a
New item that creates a new window. The program begins by opening a single
window near the upper-left corner of the screen. When the user chooses New
from the File menu, all open windows jump 30 pixels down and 30 pixels to the
right of their current locations. Thus, if a user chooses New a number of times
(without moving the windows as they’re created), the windows end up staggered
(as shown in Figure 9-5) rather than piled up like cards in a deck.

The WindowMessage1 project defines two application-defined message constants.
A message of type MENU_NEW_WINDOW_MSG is implicitly generated whenever the
user selects the New menu item. A message of type MOVE_WINDOWS_MSG is explic-
itly posted as a part of carrying out a New menu item selection:

#define   MENU_NEW_WINDOW_MSG    'nwwd'
#define   MOVE_WINDOWS_MSG       'anwd'

The MyHelloWindow constructor adds a menubar with the single menu to a new
window. The AddItem() function that adds the menu item is responsible for asso-
ciating a BMessage of type MENU_NEW_WINDOW_MSG with the menu item:

MyHelloWindow::MyHelloWindow(BRect frame)
    : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
   frame.OffsetTo(B_ORIGIN);

Figure 9-5. The staggered windows of the WindowMessage1 program



Application-Defined Messages 341

   frame.top += MENU_BAR_HEIGHT + 1.0;

   fMyView = new MyDrawView(frame, "MyDrawView");
   AddChild(fMyView);

   BMenu  *menu;
   BRect  menuBarRect;

   menuBarRect.Set(0.0, 0.0, 10000.0, MENU_BAR_HEIGHT);
   fMenuBar = new BMenuBar(menuBarRect, "MenuBar");
   AddChild(fMenuBar);

   menu = new BMenu("File");
   fMenuBar->AddItem(menu);
   menu->AddItem(new BMenuItem("New Window",
                 new BMessage(MENU_NEW_WINDOW_MSG)));

   Show();
}

Each time the New menu item is selected, a copy of the menu item’s message is
created. A message object of this type consists of nothing more than the message
constant MENU_NEW_WINDOW_MSG. The new message object is sent to the mes-
sage’s handler. By default, this handler is the window the menu item appears in.
So it is the MessageReceived() function of the MyHelloWindow class that
becomes responsible for handling the message generated by a New menu item
selection:

void MyHelloWindow::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case MENU_NEW_WINDOW_MSG:
         be_app->PostMessage(MOVE_WINDOWS_MSG, be_app);
         break;

      default:
         BWindow::MessageReceived(message);
   }
}

If I wanted the New menu item to simply create a new MyHelloWindow, I could
do that with just a few lines of code. But besides creating a new window, the han-
dling of this menu item choice might affect a number of existing windows. Keep-
ing track of the windows that are currently open is the responsibility of the
BApplication object, so I create a MOVE_WINDOWS_MSG and pass it to the appli-
cation as a means of signaling the application to offset each open window. Includ-
ing the message constant MOVE_WINDOWS_MSG in the call to PostMessage() tells
this routine to create a new message object and assign the message constant
MOVE_WINDOWS_MSG to the new message object’s what data member. Since my



342 Chapter 9: Messages and Threads

messages of type MOVE_WINDOWS_MSG won’t contain any additional data, this
message-creation shortcut is appropriate. The new message object is then posted
to the application object (per the second PostMessage() parameter).

The MyHelloApplication class is to handle application-defined messages, so the
class now needs to override MessageReceived(). Since the program allows mul-
tiple windows and doesn’t keep constant track of which window is active, the
MyHelloWindow data member fMyWindow that appears in similar examples has
been eliminated:

class MyHelloApplication : public BApplication {

   public:
                       MyHelloApplication();
      virtual void     MessageReceived(BMessage* message);
};

The MyHelloApplication version of MessageReceived() uses the Chapter 4
method of repeatedly calling the BApplication function WindowAt() to gain a
reference to each currently open window. Once found, a window is moved by
invoking the BWindow function MoveBy(). After all existing windows have been
moved, a new window is opened near the upper-left corner of the screen.

void MyHelloApplication::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case MOVE_WINDOWS_MSG:
         BWindow  *oldWindow;
         int32    i = 0;

         while (oldWindow = WindowAt(i++)) {
            oldWindow->MoveBy(30.0, 30.0);
         }

         BRect          theRect;
         MyHelloWindow  *newWindow;

         theRect.Set(20.0, 30.0, 220.0, 130.0);
         newWindow = new MyHelloWindow(theRect);
         break;

      default:
         inherited::MessageReceived(message);
         break;
   }
}

The BApplication function WindowAt() returns a BWindow object—so that’s
what I’ve declared oldWindow to be. The only action I take with the returned win-
dow is to call the BWindow function MoveBy(). If I needed to perform some



Application-Defined Messages 343

MyHelloWindow-specific action on the window (for instance, if the
MyHelloWindow class defined a member function that needed to be invoked),
then I’d first need to typecast oldWindow to a MyHelloWindow object.

Adding and retrieving message data

A number of BMessage member functions make it possible to easily add informa-
tion to any application-defined message object. The prototypes for several of these
routines are listed here:

status_t AddBool(const char  *name,
                 bool        aBool)

status_t AddInt32(const char  *name,
                  int32       anInt32)

status_t AddFloat(const char  *name,
                  float       aFloat)

status_t AddRect(const char  *name,
                 BRect       rect)

status_t AddString(const char  *name,
                   const char  *string)

status_t AddPointer(const char  *name,
                    const void  *pointer)

To add data to a message, create the message object and then invoke the
BMessage function suitable to the type of data to add to the message object. The
following snippet adds a pair of numbers, each stored as a 32-bit integer, to a
message:

#define    HI_LOW_SCORE_MSG   'hilo'

BMessage  *currentScoreMsg = new BMessage(HI_LO_SCORE_MSG);
int32     highScore = 96;
int32     lowScore  = 71;

currentScoreMsg->AddInt32("High", highScore);
currentScoreMsg->AddInt32("Low", lowScore);

After the above code executes, a new message object exists—one that is refer-
enced by the variable currentScoreMsg. This message has a what data member
value of HI_LO_SCORE_MSG, and holds integers with values of 96 and 71.

For each Add function, the BMessage class defines a Find function. Each Find
function is used to extract one piece of information from a message:

status_t  FindBool(const char *name,
                   bool       *value) const;



344 Chapter 9: Messages and Threads

status_t  FindInt32(const char *name,
                    int32      *val) const;

status_t  FindFloat(const char *name,
                    float      *f) const;

status_t  FindRect(const char *name,
                   BRect      *rect) const;

status_t  FindString(const char *name,
                     const char **str) const;

status_t  FindPointer(const char *name,
                      void       **ptr) const;

To make use of data in a message, the originating object creates the message,
invokes Add functions to add the data, and posts the message using
PostMessage(). The receiving object invokes Find functions to extract any or all
of the message’s data from the object that receives the message.

Data added to a message always has both a name and a type. These traits alone
are usually enough to extract the data—it’s not your program’s responsibility to
keep track of data ordering in a message object (the exception being arrays, which
are covered just ahead). To access the two integers stored in the previous snip-
pet’s currentScoreMsg message object, use this code:

int32  highestValue;
int32  lowestValue;

currentScoreMsg->FindInt32("High", &highestValue);
currentScoreMsg->FindInt32("Low", &lowestValue);

It’s worthwhile to note that when adding data to a message, you can use the same
name and datatype for more than one piece of information. For instance, two high
score values could be saved in one message object as follows:

currentScoreMsg->AddInt32("High", 98);
currentScoreMsg->AddInt32("High", 96);

In such a situation, an array of the appropriate datatype (32-bit integers in this
example) is set up and the values are inserted into the array in the order they are
added to the message. As expected, array element indices begin at 0. There is a
second version of each Find routine, one that has an index parameter for finding
a piece of information that is a part of an array. For instance, the FindInt32()
function used for accessing an array element looks like this:

status_t  FindInt32(const char *name,
                    int32      index,
                    int32      *val) const;



Application-Defined Messages 345

To access an array element, include the index argument. Here the value of 96 (the
second element, with an index of 1) is being retrieved from the
currentScoreMsg message:

int32  secondHighValue;

currentScoreMsg->FindInt32("High", 1, &secondHighValue);

Make sure to check out the BMessage class description in the Application Kit
chapter of the Be Book. There you’ll find descriptions for other Add and Find rou-
tines, such as AddInt16() and FindPoint(). You’ll also see the other variants of
each of the Add and Find routines I’ve listed. The Be Book also discusses the uni-
versal, or generic, AddData() member function. You can optionally use this rou-
tine in place of any of the type-specific functions (such as AddInt32() or
AddFloat()) or for adding data of an application-defined type to a message
object.

Message data example project

The WindowMessage2 project does the same thing as the WindowMessage1
project—it offsets all open windows when a new window is opened. Like
WindowMessage1, this latest project uses messages to carry out its task. Let’s look
at the different approach used by the two projects.

Recall that when the WindowMessage1 program opened a new window, the active
window created a single message and sent it to the application object’s
MessageReceived() function. It was then the responsibility of the application
object to locate and move each window. The application did that by looping
through the window list and calling MoveBy() for each window it encountered.

In the WindowMessage2 program, the active window’s MessageReceived() func-
tion cycles through the window list. When a window is encountered, a reference
to it is stored as data in a message, and that message is posted to the application.
When the application object’s MessageReceived() function gets the message, it
retrieves the window reference and moves that one window. Thus the window
that holds the selected New menu item may generate numerous messages (one for
each window that’s already open). The WindowMessage1 project may have acted
a little more efficiently, but WindowMessage2 gives me the opportunity to post a
slew of messages! It also gives me an excuse to store some data in each mes-
sage—something the WindowMessage1 project didn’t do.

WindowMessage2 defines the same two application-defined messages as the
WindowMessage1 project—a MENU_NEW_WINDOW_MSG issued by a selection of the
New menu item, and a MOVE_WINDOWS_MSG created by the window and sent to
the application. This latest version of the MyHelloWindow constructor is identical
to the version in the WindowMessage1 project—refer back to that example to see



346 Chapter 9: Messages and Threads

the listing. The MyHelloWindow version of MessageReceived(), however, is dif-
ferent. Instead of simply creating a new MOVE_WINDOWS_MSG and sending it to the
application, this function now repeatedly calls the BApplication function
WindowAt(). For each open window, the loop creates a new message, adds a
window reference to the message, and posts the message to the application:

void MyHelloWindow::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case MENU_NEW_WINDOW_MSG:

         BRect          theRect;
         MyHelloWindow  *newWindow;
         BWindow        *oldWindow;
         int32          i = 0;
         BMessage       *newWindowMsg;

         while (oldWindow = be_app->WindowAt(i++)) {
            newWindowMsg = new BMessage(MOVE_WINDOWS_MSG);
            newWindowMsg->AddPointer("Old Window", oldWindow);
            be_app->PostMessage(newWindowMsg, be_app);
         }

         theRect.Set(20.0, 30.0, 220.0, 130.0);
         newWindow = new MyHelloWindow(theRect);
         break;

      default:
         BWindow::MessageReceived(message);
   }
}

Each posted MOVE_WINDOWS_MSG message has the application as the designated
handler. When a message reaches the application object, that object’s
MessageReceived() function calls FindPointer() to access the window of
interest. The BMessage function name (FindPointer()), along with the data
name (“Old Window”), indicates that the message object data should be searched
for a pointer stored under the name “Old Window.” Of course, in this example,
that one piece of information is the only data stored in a MOVE_WINDOWS_MSG mes-
sage, but the technique applies to messages of any size. A window object is a
pointer, so the returned value can be used as is—a call to the BWindow function
MoveBy() is all that’s needed to relocate the window:

void MyHelloApplication::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case MOVE_WINDOWS_MSG:
         BWindow  *theWindow;



Application-Defined Messages 347

         message->FindPointer("Old Window", &theWindow);
         theWindow->MoveBy(30.0, 30.0);
         break;
   }
}

If you enable the debugger and run the program, you might be able
to see multithreading in action. If you set a breakpoint in the
MyHelloApplication version of MessageReceived(), you’ll note
that, as expected, the function gets called once for each already
open window. You may be surprised to see the new window open
before the last of the already opened windows is moved. With sev-
eral windows open, a number of messages are posted to the applica-
tion. One by one the application pulls these messages from its
queue and handles each by moving one window. While that’s going
on, the code that creates the new window may very well execute.

A second message data example project

The previous two projects both relied on the user making a menu selection to
trigger the posting of a message to the application object—it was a menu item-
generated message handled in a window’s MessageReceived() function that in
turn created another message. While it may in fact be a menu item selection or
other user action that causes your program to create still another message, this
doesn’t have to be the case. The stimulus may be an event unrelated to any direct
action by the user that causes your program to create and post a message. Here, in
the AlertMessage project, the launching of an application may result in that pro-
gram creating a message.

All Be applications can be launched by either double-clicking on the program’s
icon or by typing the program’s name from the command line. Like any of the
examples in this book, the AlertMessage program can be launched by opening a
terminal window: run the Terminal application from the Tracker’s app menu,
move to the directory that holds the AlertMessage program, and type the program
name. Regardless of whether AlertMessage launches from the desktop or from the
command line, a single window opens. If the program starts up from the com-
mand line, however, the option exists to choose the number of windows that will
automatically open. To take advantage of this option, the user need simply follow
the program name with a space and the desired number of windows. Figure 9-6
shows how I worked my way into the folder that holds my copy of AlertMessage,
and how I then indicated that the program should start with three windows open.

The AlertMessage program allows at most five windows to be opened at applica-
tion launch. If you launch AlertMessage from the command line and enter a value



348 Chapter 9: Messages and Threads

greater than 5, the program will execute, but only five windows will open. In such
a case, the program gives the user an indication of what happened by displaying
an alert like the one shown in Figure 9-7.

The alert in Figure 9-7 is displayed thanks to a message the application posts to
itself. When the AlertMessage program launches from the command line, a check

Figure 9-6. Launching the AlertMessage program from the command line

Figure 9-7. The windows of the AlertMessage program



Application-Defined Messages 349

is made to see if the user-specified window value is greater than 5. If it is, an
application-defined WINDOW_MAX_MSG is created:

#define   WINDOW_MAX_MSG  'wdmx'

BMessage  *maxWindowsMsg = new BMessage(WINDOW_MAX_MSG);

The WindowMessage2 project demonstrated how to add a pointer to a message.
Here you see how to add a Boolean value and a string. The means are BMessage
Add functions—data of other types is added in a similar manner:

bool        beepOnce = true;
const char  *alertString = "Maximum windows open";

maxWindowsMsg->AddBool("Beep", beepOnce);
maxWindowsMsg->AddString("Alert String", alertString);

The beepOnce variable will be used to specify whether or not a beep should
accompany the display of the alert. The alertString holds the text to be dis-
played. Once created and set up, the message is posted to the application:

be_app->PostMessage(maxWindowsMsg, be_app);

PostMessage() specifies that the application be the message handler, so it’s the
application object’s version of MessageReceived() that gets this WINDOW_MAX_
MSG message:

void MyHelloApplication::MessageReceived(BMessage* message)
{
   switch (message->what) {

      case WINDOW_MAX_MSG:
         bool        beepOnce;
         const char  *alertString;
         BAlert      *alert;
         long        result;

         beepOnce = message->FindBool("Beep");
         alertString = message->FindString("Alert String");

         if (beepOnce)
            beep();

         alert = new BAlert("MaxWindowAlert", alertString, "OK");
         result = alert->Go();

         break;
   }
}

MessageReceived() handles the message by first accessing its data. If beepOnce
is true, a system beep is sounded. The text of the string alertString is used as



350 Chapter 9: Messages and Threads

the text displayed in the alert (refer to Chapter 4 for information about alerts and
the BAlert class).

AlertMessage is this book’s first example that uses a command-line argument in
the launching of a program, so a little extra explanation on how a program
receives and responds to such input is in order.

Command-line arguments

An application message (a system message that affects the application itself rather
than one particular window) is both received and handled by a program’s
BApplication object. A B_ARGV_RECEIVED message is such an application mes-
sage. When a program is launched with one or more arguments from the com-
mand line, a B_ARGV_RECEIVED message is delivered to the application. Unlike
most application messages, a B_ARGV_RECEIVED message holds data. In particu-
lar, it holds two pieces of data. The first, argc, is an integer that specifies how
many arguments the program receives. The second, argv, is an array that holds
the actual arguments. Because the program name itself is considered an argu-
ment, the value of argc will be one greater than the number of arguments the
user typed. The array argv will thus always have as its first element the string that
is the name of the program. Consider the case of the user launching the just-
discussed AlertMessage program as follows:

$ AlertMessage 4

Here the value of argc will be 2. The string in argv[0] will be “AlertMessage”
prefaced with the pathname, while the string in argv[1] will be “4”. Because all
arguments are stored as strings, you’ll need to convert strings to numbers as neces-
sary. Here I’m using the atoi() string-to-integer function from the standard C++
library to convert the above user-entered argument from the string “4” to the inte-
ger 4:

uint32 userNumWindows = atoi(argv[1]);

The fact that the program’s path is included as part of the program
name in the string argv[0] is noteworthy if you’re interested in
determining the program’s name (remember—from the desktop the
user is free to change the name of your application!). If the user is
keeping the AlertMessage program in the computer’s root directory,
and launches it from the command line while in a subdirectory, the
value of argv[0] will be “/root/AlertMessage”. If your program is to
derive its own name from argv[0], it should strip off leading char-
acters up to and including the final “/” character.



Application-Defined Messages 351

When a program receives a B_ARGV_RECEIVED message, it dispatches it to its
ArgvReceived() function. I’ve yet to discuss this BApplication member func-
tion because up to this point none of my example projects have had a provision
for handling user input at application launch. The AlertMessage program does
accept such input, so its application object needs to override this routine:

class MyHelloApplication : public BApplication {

   public:
                       MyHelloApplication();
      virtual void     MessageReceived(BMessage* message);
      virtual void     ArgvReceived(int32 argc, char **argv);
};

The program relies on a number of constants in opening each window. WINDOW_
WIDTH and WINDOW_HEIGHT define the size of each window. WINDOW_1_LEFT and
WINDOW_1_TOP establish the screen position of the first window. The two offset
constants establish how each subsequent window is to be staggered from the pre-
viously opened window:

#define    WINDOW_WIDTH        200.0
#define    WINDOW_HEIGHT       100.0
#define    WINDOW_1_LEFT        20.0
#define    WINDOW_1_TOP         30.0
#define    WINDOW_H_OFFSET      30.0
#define    WINDOW_V_OFFSET      30.0

Regardless of whether the user launches AlertMessage from the desktop or from
the shell, one window is always opened. The AlertMessage version of
ArgvReceived() looks at the value the user typed in following the program
name and uses that number to determine how many additional windows to open.
ArgvReceived() thus opens the user-entered value of windows, less one. Before
doing that, however, the user’s value is checked to verify that it doesn’t exceed
5—the maximum number of windows AlertMessage allows. If the value is greater
than 5, ArgvReceived() creates a WINDOW_MAX_MSG, supplies this message with
some data, and posts the message. After posting the message, the number of win-
dows to open is set to the maximum of 5:

void MyHelloApplication::ArgvReceived(int32 argc, char **argv)
{
   uint32 userNumWindows = atoi(argv[1]);

   if (userNumWindows > 5) {
      bool        beepOnce = true;
      const char  *alertString = "Maximum windows open";
      BMessage    *maxWindowsMsg = new BMessage(WINDOW_MAX_MSG);

      maxWindowsMsg->AddBool("Beep", beepOnce);
      maxWindowsMsg->AddString("AlertString", alertString);
      be_app->PostMessage(maxWindowsMsg, be_app);



352 Chapter 9: Messages and Threads

      userNumWindows = 5;
   }

   BRect          aRect;
   float          left = WINDOW_1_LEFT + WINDOW_H_OFFSET;
   float          right = left + WINDOW_WIDTH;
   float          top = WINDOW_1_TOP + WINDOW_V_OFFSET;
   float          bottom = top + WINDOW_HEIGHT;
   MyHelloWindow  *theWindow;
   uint32         i;

   for (i = 2; i <= userNumWindows; i++) {
      aRect.Set(left, top, right, bottom);
      theWindow = new MyHelloWindow(aRect);
      left   += WINDOW_H_OFFSET;
      right  += WINDOW_H_OFFSET;
      top    += WINDOW_V_OFFSET;
      bottom += WINDOW_V_OFFSET;
   }

}

As mentioned in the description of the AlertMessage project, a posted WINDOW_
MAX_MSG is handled by the application object’s MessageReceived() function.
There the message data is accessed and an alert posted.

Adding data of any type to a message

The BMessage Add routines, such as AddBool() and AddString(), serve as a
sort of shorthand notation for the more generic BMessage function AddData().
AddData() can be used to add data of any type to a message. Thus, AddData()
can be used to add data of an application-defined type, or data of any of the types
that can be added using a specific Add function. Here’s the declaration for
AddData():

status_t AddData(const char  *name,
                 type_code   type,
                 const void  *data,
                 ssize_t     numBytes,
                 bool        fixedSize = true,
                 int32       numItems = 1)

The name and data parameters serve the same purposes as their counterparts in
the other Add routines—name serves as an identifier that’s used when later access-
ing the data through the use of a Find function, while data holds the data itself.
Unlike most Add functions, though, in AddData() the data parameter is a pointer
to the data rather than the data itself.

Because AddData() can accept data of any type, you need to specify both the
kind of data to add and the size, in bytes, of data that is to be added. Use the
appropriate Be-defined type constant for the type parameter. The third column of



Application-Defined Messages 353

Table 9-1 lists these constants for commonly used Add routines—make sure to turn
to the BMessage class description in the Application Kit chapter of the Be Book
for more Add routines and corresponding type constants.

The fixedSize and numItems parameters are useful only when adding data that
is to become the first item in a new array (recall that adding data with the same
name parameter automatically results in the data being stored in an array). Both
these parameters help AddData() work with data more efficiently. If the array is
to hold items that are identical in size (such as an array of integers), pass true for
fixedSize. If you have an idea of how many items will eventually be in the
array, pass that value as numItems. An inaccurate value for numItems just dimin-
ishes slightly the efficiency with which AddData() utilizes memory—it won’t
cause the routine to fail.

The just-described AlertMessage example project created a message object and
added a bool value and a string to that message:

bool        beepOnce = true;
const char  *alertString = "Maximum windows open";
BMessage    *maxWindowsMsg = new BMessage(WINDOW_MAX_MSG);

maxWindowsMsg->AddBool("Beep", beepOnce);
maxWindowsMsg->AddString("AlertString", alertString);

Because AddBool() and AddString() are simply data-type “tuned” versions of
AddData(), I could have added the data using two calls to AddData(). To do
that, I’d replace the last two lines in the above snippet with this code:

maxWindowsMsg->AddData("Beep", B_BOOL_TYPE, &beepOnce, sizeof(bool));

maxWindowsMsg->AddData("AlertString", B_STRING_TYPE,
                        alertString, strlen(alertString));

AddData() accepts a pointer to the data to add, so the bool variable beepOnce is
now prefaced with the “address of” operator. The string alertString is already
in the form of a pointer (char *), so it can be passed as it was for AddString().
As shown in the above snippet, if you’re adding a bool value, pass B_BOOL_TYPE

Table 9-1. BMessage Add Functions and Associated Be-Defined Type Constants

Add Member Function Datatype Added Datatype Constant

AddBool() bool B_BOOL_TYPE

AddInt32() int32/uint32 B_INT32_TYPE

AddFloat() float B_FLOAT_TYPE

AddRect() BRect object B_RECT_TYPE

AddString() Character string B_STRING_TYPE

AddPointer() Any type of pointer B_POINTER_TYPE



354 Chapter 9: Messages and Threads

as the second AddData() parameter. You generally determine the size of the data
to add through the standard library function sizeof() or, as in the case of a
string, the strlen() routine.

Like the other Add functions, AddData() has a companion Find function—
FindData(). Here’s that routine’s prototype:

status_t FindData(const char  *name,
                  type_code   type,
                  const void  **data,
                  ssize_t     *numBytes)

FindData() searches a message for data that is of the type specified by the type
parameter and that is stored under the name specified by the name parameter.
When it finds it, it stores a pointer to it in the data parameter, and returns the
number of bytes the data consists of in the numBytes parameter. An example of
the use of FindData() appears next.

Data, messages, and the clipboard

Earlier in this chapter, I discussed the clipboard, but held off on presenting an
example project. Here’s why: the clipboard holds its data in a BMessage object,
and the details of accessing message data weren’t revealed until well past this
chapter’s first mention of the clipboard. Now that you’ve been introduced to the
clipboard and have a background in BMessage basics, working with the clip-
board will seem simple.

The clipboard is represented by a BClipboard object that includes a data mem-
ber that is a BMessage object. Items on the clipboard are all stored as separate
data in this single clipboard message object. This is generally of little importance
to you because most program interaction with the clipboard is transparent. For
instance, when you set up a Paste menu item, the B_PASTE message is associated
with the menu item, and your work to support pasting is finished. Here’s the perti-
nent code:

menu->AddItem(menuItem = new BMenuItem("Paste", new BMessage(B_PASTE), 'V'));
menuItem->SetTarget(NULL, this);

If your program has cause to add data to, or retrieve data from, the clipboard by
means other than the standard Be-defined messages, it can. Only then is it impor-
tant to understand how to interact with the clipboard’s data.

Because the clipboard object can be accessed from any number of objects
(belonging to your application or to any other running application), the potential
for clipboard data to be accessed by two threads at the same time exists. Clip-
board access provides a specific example of locking and unlocking an object, the
topic discussed in this chapter’s “Messaging” section. Before working with the clip-
board, call the BClipboard function Lock() to prevent other access by other



Application-Defined Messages 355

threads (if the clipboard is in use by another thread when your thread calls
Lock(), your thread will wait until clipboard access becomes available). When fin-
ished, open up clipboard access by other threads by calling the BClipboard func-
tion Unlock():

be_clipboard->Lock();

// access clipboard data here

be_clipboard->Unlock();

The global clipboard is typically used to hold a single item—the most recent item
copied by the user. Adding a new item generally overwrites the current item
(which could be any manner of data, including that copied from a different appli-
cation). If your thread is adding data to the clipboard, it should first clear out the
existing clipboard contents. The BClipboard function Clear() does that. After
adding its own data, your thread needs to call the BClipboard function Commit()
to confirm that this indeed is the action to perform. So while the above snippet
works fine for retrieving clipboard data, it should be expanded a bit for adding
data to the clipboard:

be_clipboard->Lock();
be_clipboard->Clear();

// add clipboard data here

be_clipboard->Commit();
be_clipboard->Unlock();

To actually access the clipboard’s data, call the BClipboard function Data(). This
function obtains a BMessage object that you use to reference the clipboard’s data.
This next snippet shows that here you don’t use new to create the message—the
Data() function returns the clipboard’s data-holding message:

BMessage  *clipMessage;

clipMessage = be_clipboard->Data();

At this point, clipboard data can be accessed using BMessage functions such as
AddData() and FindData(). Here the text “Testing123” replaces whatever cur-
rently resides on the clipboard:

const char *theString = "Testing123";

be_clipboard->Lock();
be_clipboard->Clear();

BMessage  *clipMessage;

clipMessage = be_clipboard->Data();



356 Chapter 9: Messages and Threads

clipMessage->AddData("text/plain", B_MIME_TYPE, theString,
strlen(theString));

be_clipboard->Commit();
be_clipboard->Unlock();

The clipboard exists for data exchange—including interapplication exchange. So
you might not be surprised to see that MIME (Multipurpose Internet Mail Exten-
sions) may be involved in clipboard usage. When you pass AddData() a type
parameter of B_MIME_TYPE, you’re specifying that the data to be added is of the
MIME main type and subtype listed in the name parameter. For adding text, use
text as the main type and plain as the subtype—resulting in “text/plain” as the
first AddData() parameter.

To retrieve data from the clipboard, use the BMessage function FindData(). This
snippet brings whatever text is currently on the clipboard into a string variable
named clipString. It also returns the number of bytes of returned text in the
variable numBytes:

be_clipboard->Lock();

BMessage    *clipMessage;
const char  *clipString;
ssize_t     numBytes;

clipMessage = be_clipboard->Data();
clipMessage->FindData("text/plain", B_MIME_TYPE, &clipString, &numBytes);

be_clipboard->Unlock();

Clipboard example project

The ClipboardMessage project provides a simple example of adding text to the
clipboard. This project adds just a few changes to the Chapter 8 project Text-
ViewEdit. Recall that TextViewEdit displayed a window that included a single
menu with a Test item that sounds the system beep, and the four standard text-
editing items. The window also included one BTextView object. Figure 9-8 shows
that for the new ClipboardMessage project a new Add String menu item has been
added. Choosing Add String clears the clipboard and places the text “Testing123”
on it. Subsequent pastes (whether performed by choosing the Paste menu item or
by pressing Command-v) place this string at the insertion point in the window’s
text view object.

The MyHelloWindow constructor associates a new application-defined message
constant, ADD_STR_MSG, with the new Add String menu item. Except for the new
AddItem() line before the call to Show(), the MyHelloWindow constructor is



Application-Defined Messages 357

identical to the version used in the Chapter 8 TextViewEdit project on which this
new project is based, so only a part of the constructor is shown here:

#define   ADD_STR_MSG      'adst'

MyHelloWindow::MyHelloWindow(BRect frame)
    : BWindow(frame, "My Hello", B_TITLED_WINDOW, B_NOT_ZOOMABLE)
{
   ...
   menu->AddItem(menuItem = new BMenuItem("Select All",
                                           new BMessage(B_SELECT_ALL), 'A'));
   menuItem->SetTarget(NULL, this);
   menu->AddItem(menuItem = new BMenuItem("Add String",
                                           new BMessage(ADD_STR_MSG)));

   Show();
}

The MessageReceived() function holds the new clipboard code. Selecting Add
String locks and clears the clipboard, accesses the clipboard data-holding mes-
sage, adds a string to the clipboard, commits that addition, then unlocks the clip-
board for use by other threads. Here’s MessageReceived() in its entirety (recall
that the text-editing commands B_CUT, B_COPY, B_PASTE, and B_SELECT_ALL are
standard messages that are automatically handled by the system):

void MyHelloWindow::MessageReceived(BMessage* message)
{
   switch(message->what)
   {
      case ADD_STR_MSG:

         const char *theString = "Testing123";

         be_clipboard->Lock();
         be_clipboard->Clear();

         BMessage  *clipMessage;

         clipMessage = be_clipboard->Data();

Figure 9-8. The window of the ClipboardMessage program



358 Chapter 9: Messages and Threads

         clipMessage->AddData("text/plain", B_MIME_TYPE, theString,
                                    strlen(theString));

         be_clipboard->Commit();
         be_clipboard->Unlock();

         break;

      case TEST_MSG:
         beep();
         break;

      default:
         BWindow::MessageReceived(message);
   }
}


