4 Easy Ways to Learn More and Stay Current

Programming Newsletter
Get programming related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O’Reilly Radar
Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O’Reilly conference.
conferences.oreilly.com
Hadoop with Python

Zachary Radtka & Donald Miner
Table of Contents

Source Code ... vii

1. **Hadoop Distributed File System (HDFS).** 1
 Overview of HDFS ... 2
 Interacting with HDFS 3
 Snakebite .. 7
 Chapter Summary ... 13

2. **MapReduce with Python.** ... 15
 Data Flow .. 15
 Hadoop Streaming .. 18
 mrjob .. 22
 Chapter Summary ... 26

3. **Pig and Python.** ... 27
 WordCount in Pig .. 28
 Running Pig .. 29
 Pig Latin ... 31
 Extending Pig with Python 35
 Chapter Summary ... 40

4. **Spark with Python.** ... 41
 WordCount in PySpark 41
 PySpark .. 43
 Resilient Distributed Datasets (RDDs) 44
 Text Search with PySpark 50
5. Workflow Management with Python

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>53</td>
</tr>
<tr>
<td>Workflows</td>
<td>54</td>
</tr>
<tr>
<td>An Example Workflow</td>
<td>55</td>
</tr>
<tr>
<td>Hadoop Workflows</td>
<td>58</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>62</td>
</tr>
</tbody>
</table>
All of the source code in this book is on GitHub. To copy the source code locally, use the following `git clone` command:

```
$ git clone https://github.com/MinerKasch/HadoopWithPython
```
The Hadoop Distributed File System (HDFS) is a Java-based distributed, scalable, and portable filesystem designed to span large clusters of commodity servers. The design of HDFS is based on GFS, the Google File System, which is described in a paper published by Google. Like many other distributed filesystems, HDFS holds a large amount of data and provides transparent access to many clients distributed across a network. Where HDFS excels is in its ability to store very large files in a reliable and scalable manner.

HDFS is designed to store a lot of information, typically petabytes (for very large files), gigabytes, and terabytes. This is accomplished by using a block-structured filesystem. Individual files are split into fixed-size blocks that are stored on machines across the cluster. Files made of several blocks generally do not have all of their blocks stored on a single machine.

HDFS ensures reliability by replicating blocks and distributing the replicas across the cluster. The default replication factor is three, meaning that each block exists three times on the cluster. Block-level replication enables data availability even when machines fail.

This chapter begins by introducing the core concepts of HDFS and explains how to interact with the filesystem using the native built-in commands. After a few examples, a Python client library is introduced that enables HDFS to be accessed programmatically from within Python applications.
Overview of HDFS

The architectural design of HDFS is composed of two processes: a process known as the NameNode holds the metadata for the filesystem, and one or more DataNode processes store the blocks that make up the files. The NameNode and DataNode processes can run on a single machine, but HDFS clusters commonly consist of a dedicated server running the NameNode process and possibly thousands of machines running the DataNode process.

The NameNode is the most important machine in HDFS. It stores metadata for the entire filesystem: filenames, file permissions, and the location of each block of each file. To allow fast access to this information, the NameNode stores the entire metadata structure in memory. The NameNode also tracks the replication factor of blocks, ensuring that machine failures do not result in data loss. Because the NameNode is a single point of failure, a secondary NameNode can be used to generate snapshots of the primary NameNode’s memory structures, thereby reducing the risk of data loss if the NameNode fails.

The machines that store the blocks within HDFS are referred to as DataNodes. DataNodes are typically commodity machines with large storage capacities. Unlike the NameNode, HDFS will continue to operate normally if a DataNode fails. When a DataNode fails, the NameNode will replicate the lost blocks to ensure each block meets the minimum replication factor.

The example in Figure 1-1 illustrates the mapping of files to blocks in the NameNode, and the storage of blocks and their replicas within the DataNodes.

The following section describes how to interact with HDFS using the built-in commands.
Interacting with HDFS

Interacting with HDFS is primarily performed from the command line using the script named hdfs. The hdfs script has the following usage:

$ hdfs COMMAND [-option <arg>]

The COMMAND argument instructs which functionality of HDFS will be used. The -option argument is the name of a specific option for the specified command, and <arg> is one or more arguments that are specified for this option.

Common File Operations

To perform basic file manipulation operations on HDFS, use the dfs command with the hdfs script. The dfs command supports many of the same file operations found in the Linux shell.

It is important to note that the hdfs command runs with the permissions of the system user running the command. The following examples are run from a user named “hduser.”

List Directory Contents

To list the contents of a directory in HDFS, use the -ls command:

$ hdfs dfs -ls
$
Running the `-ls` command on a new cluster will not return any results. This is because the `-ls` command, without any arguments, will attempt to display the contents of the user’s home directory on HDFS. This is not the same home directory on the host machine (e.g., `/home/$USER`), but is a directory within HDFS.

Providing `-ls` with the forward slash (`/`) as an argument displays the contents of the root of HDFS:

```
$ hdfs dfs -ls /
Found 2 items
  drwxr-xr-x   - hadoop supergroup   0 2015-09-20 14:36 /hadoop
  drwx------   - hadoop supergroup   0 2015-09-20 14:36 /tmp
```

The output provided by the `hdfs dfs` command is similar to the output on a Unix filesystem. By default, `-ls` displays the file and folder permissions, owners, and groups. The two folders displayed in this example are automatically created when HDFS is formatted. The `hadoop` user is the name of the user under which the Hadoop daemons were started (e.g., NameNode and DataNode), and the `supergroup` is the name of the group of superusers in HDFS (e.g., `hadoop`).

Creating a Directory

Home directories within HDFS are stored in `/user/$HOME`. From the previous example with `-ls`, it can be seen that the `/user` directory does not currently exist. To create the `/user` directory within HDFS, use the `-mkdir` command:

```
$ hdfs dfs -mkdir /user
```

To make a home directory for the current user, `hduser`, use the `-mkdir` command again:

```
$ hdfs dfs -mkdir /user/hduser
```

Use the `-ls` command to verify that the previous directories were created:

```
$ hdfs dfs -ls -R /user
drwxr-xr-x   - hduser supergroup   0 2015-09-22 18:01 /user/hduser
```

4 | Chapter 1: Hadoop Distributed File System (HDFS)
Copy Data onto HDFS

After a directory has been created for the current user, data can be uploaded to the user’s HDFS home directory with the `-put` command:

```
$ hdfs dfs -put /home/hduser/input.txt /user/hduser
```

This command copies the file `/home/hduser/input.txt` from the local filesystem to `/user/hduser/input.txt` on HDFS.

Use the `-ls` command to verify that `input.txt` was moved to HDFS:

```
$ hdfs dfs -ls
Found 1 items
-rw-r--r--   1 hduser supergroup         52 2015-09-20 13:20 input.txt
```

Retrieving Data from HDFS

Multiple commands allow data to be retrieved from HDFS. To simply view the contents of a file, use the `-cat` command. `-cat` reads a file on HDFS and displays its contents to stdout. The following command uses `-cat` to display the contents of `/user/hduser/input.txt`:

```
$ hdfs dfs -cat input.txt
jack be nimble
jack be quick
jack jumped over the candlestick
```

Data can also be copied from HDFS to the local filesystem using the `-get` command. The `-get` command is the opposite of the `-put` command:

```
$ hdfs dfs -get input.txt /home/hduser
```

This command copies `input.txt` from `/user/hduser` on HDFS to `/home/hduser` on the local filesystem.

HDFS Command Reference

The commands demonstrated in this section are the basic file operations needed to begin using HDFS. Below is a full listing of file manipulation commands possible with `hdfs dfs`. This listing can also be displayed from the command line by specifying `hdfs dfs` without any arguments. To get help with a specific option, use either `hdfs dfs -usage <option>` or `hdfs dfs -help <option>`.
Usage: hadoop fs [generic options]
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] [-h] <path> ...]
[-cp [-f] [-p | -p[topax]] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-find <path> ... <expression> ...]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getfattr [-R] [-n name | -d] [-e en] <path>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] <path> ...]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] [-l] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rmdir [-ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]]
[-setfattr {-n name -v value} | -x name] <path>]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test [-defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-truncate [-w] <length> <path> ...]
[-usage [cmd ...]]

Generic options supported are
- -conf <configuration file> specify an application configuration file
- -D <property=value> use value for given property
- -fs <local|namenode:port> specify a namenode
- -jt <local|resourcemanager:port> specify a ResourceManager
- -files <comma separated list of files> specify comma separa-
-libjars <comma separated list of jars> specify comma sepa-
-rated jar files to include in the classpath.
-archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

The next section introduces a Python library that allows HDFS to be
accessed from within Python applications.

Snakebite

Snakebite is a Python package, created by Spotify, that provides a
Python client library, allowing HDFS to be accessed programmati-
cally from Python applications. The client library uses protobuf
messages to communicate directly with the NameNode. The Snake‐
bite package also includes a command-line interface for HDFS that
is based on the client library.

This section describes how to install and configure the Snakebite
package. Snakebite's client library is explained in detail with multiple
examples, and Snakebite's built-in CLI is introduced as a Python
alternative to the hdfs dfs command.

Installation

Snakebite requires Python 2 and python-protobuf 2.4.1 or higher.
Python 3 is currently not supported.

Snakebite is distributed through PyPI and can be installed using
pip:

$ pip install snakebite

Client Library

The client library is written in Python, uses protobuf messages, and
implements the Hadoop RPC protocol for talking to the NameNode.
This enables Python applications to communicate directly with
HDFS and not have to make a system call to hdfs dfs.

List Directory Contents

Example 1-1 uses the Snakebite client library to list the contents of
the root directory in HDFS.
Example 1-1. python/HDFS/list_directory.py

```python
from snakebite.client import Client

client = Client('localhost', 9000)
for x in client.ls(['/']):
    print x
```

The most important line of this program, and every program that uses the client library, is the line that creates a client connection to the HDFS NameNode:

```python
client = Client('localhost', 9000)
```

The `Client()` method accepts the following parameters:

- **host** *(string)*
 Hostname or IP address of the NameNode

- **port** *(int)*
 RPC port of the NameNode

- **hadoop_version** *(int)*
 The Hadoop protocol version to be used (default: 9)

- **use_trash** *(boolean)*
 Use trash when removing files

- **effective_use** *(string)*
 Effective user for the HDFS operations (default: None or current user)

The `host` and `port` parameters are required and their values are dependent upon the HDFS configuration. The values for these parameters can be found in the `hadoop/conf/core-site.xml` configuration file under the property `fs.defaultFS`:

```
<property>
    <name>fs.defaultFS</name>
    <value>hdfs://localhost:9000</value>
</property>
```

For the examples in this section, the values used for `host` and `port` are `localhost` and `9000`, respectively.

After the client connection is created, the HDFS filesystem can be accessed. The remainder of the previous application used the `ls` command to list the contents of the root directory in HDFS:
```python
for x in client.ls(["/"]):
  print x
```

It is important to note that many of methods in Snakebite return generators. Therefore they must be consumed to execute. The `ls` method takes a list of paths and returns a list of maps that contain the file information.

Executing the `list_directory.py` application yields the following results:

```bash
$ python list_directory.py
{'group': u'supergroup', 'permission': 448, 'file_type': 'd', 'access_time': 0L, 'block_replication': 0, 'modification_time': 144275274936L, 'length': 0L, 'blocksize': 0L, 'owner': u'hduser', 'path': '/tmp'}
{'group': u'supergroup', 'permission': 493, 'file_type': 'd', 'access_time': 0L, 'block_replication': 0, 'modification_time': 1442742056276L, 'length': 0L, 'blocksize': 0L, 'owner': u'hduser', 'path': '/user'}
```

Create a Directory

Use the `mkdir()` method to create directories on HDFS. `Example 1-2` creates the directories `/foo/bar` and `/input` on HDFS.

```python
from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.mkdir(["/foo/bar", '/input'], create_parent=True):
  print p
```

Executing the `mkdir.py` application produces the following results:

```bash
$ python mkdir.py
{'path': '/foo/bar', 'result': True}
{'path': '/input', 'result': True}
```

The `mkdir()` method takes a list of paths and creates the specified paths in HDFS. This example used the `create_parent` parameter to ensure that parent directories were created if they did not already exist. Setting `create_parent` to `True` is analogous to the `mkdir -p` Unix command.
Deleting Files and Directories

Deleting files and directories from HDFS can be accomplished with the `delete()` method. Example 1-3 recursively deletes the `/foo` and `/bar` directories, created in the previous example.

Example 1-3. python/HDFS/delete.py

```python
from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.delete([('/foo', '/input'], recurse=True):
    print p
```

Executing the `delete.py` application produces the following results:

```
$ python delete.py
{'path': '/foo', 'result': True}
{'path': '/input', 'result': True}
```

Performing a recursive delete will delete any subdirectories and files that a directory contains. If a specified path cannot be found, the delete method throws a `FileNotFoundException`. If recurse is not specified and a subdirectory or file exists, a `DirectoryException` is thrown.

The `recurse` parameter is equivalent to `rm -rf` and should be used with care.

Retrieving Data from HDFS

Like the `hdfs dfs` command, the client library contains multiple methods that allow data to be retrieved from HDFS. To copy files from HDFS to the local filesystem, use the `copyToLocal()` method. Example 1-4 copies the file `/input/input.txt` from HDFS and places it under the `/tmp` directory on the local filesystem.

Example 1-4. python/HDFS/copy_to_local.py

```python
from snakebite.client import Client

client = Client('localhost', 9000)
for f in client.copyToLocal([('/input/input.txt'), '/tmp']):
    print f
```

Executing the `copy_to_local.py` application produces the following result:
To simply read the contents of a file that resides on HDFS, the `text()` method can be used. Example 1-5 displays the content of `/input/input.txt`.

Example 1-5. python/HDFS/text.py

```python
from snakebite.client import Client

client = Client('localhost', 9000)
for l in client.text(['/input/input.txt']):
    print l
```

Executing the `text.py` application produces the following results:

```
$ python text.py
jack be nimble
jack be quick
jack jumped over the candlestick
```

The `text()` method will automatically uncompress and display gzip and bzip2 files.

CLI Client

The CLI client included with Snakebite is a Python command-line HDFS client based on the client library. To execute the Snakebite CLI, the hostname or IP address of the NameNode and RPC port of the NameNode must be specified. While there are many ways to specify these values, the easiest is to create a `~/.snakebiterc` configuration file. Example 1-6 contains a sample config with the NameNode hostname of `localhost` and RPC port of 9000.

Example 1-6. ~/.snakebiterc

```json
{
    "config_version": 2,
    "skiptrash": true,
    "namenodes": [
        {
            "host": "localhost", "port": 9000, "version": 9
        }
    ]
}
```
The values for host and port can be found in the `hadoop/conf/core-site.xml` configuration file under the property `fs.defaultFS`.

For more information on configuring the CLI, see the Snakebite CLI documentation online.

Usage

To use the Snakebite CLI client from the command line, simply use the command `snakebite`. Use the `ls` option to display the contents of a directory:

```
$ snakebite ls /
Found 2 items
  drwx------   - hadoop    supergroup    0 2015-09-20 14:36 /tmp
  drwxr-xr-x   - hadoop    supergroup    0 2015-09-20 11:40 /user
```

Like the `hdfs dfs` command, the CLI client supports many familiar file manipulation commands (e.g., `ls`, `mkdir`, `df`, `du`, etc.).

The major difference between `snakebite` and `hdfs dfs` is that `snakebite` is a pure Python client and does not need to load any Java libraries to communicate with HDFS. This results in quicker interactions with HDFS from the command line.

CLI Command Reference

The following is a full listing of file manipulation commands possible with the `snakebite` CLI client. This listing can be displayed from the command line by specifying `snakebite` without any arguments. To view help with a specific command, use `snakebite [cmd] --help`, where `cmd` is a valid `snakebite` command.

```
snakebite [general options] cmd [arguments]
general options:
  -D --debug       Show debug information
  -V --version     Hadoop protocol version (default: 9)
  -h --help        show help
  -j --json        JSON output
  -n --namenode    namenode host
  -p --port        namenode RPC port (default: 8020)
  -v --ver         Display snakebite version

commands:
  cat [paths]            copy source paths to stdout
  chgrp <grp> [paths]    change group
  chmod <mode> [paths]   change file mode (octal)
  chown <owner:grp> [paths] change owner
  copyToLocal [paths] dst copy paths to local
```
Chapter Summary

This chapter introduced and described the core concepts of HDFS. It explained how to interact with the filesystem using the built-in hdfs dfs command. It also introduced the Python library, Snakebite. Snakebite's client library was explained in detail with multiple examples. The snakebite CLI was also introduced as a Python alternative to the hdfs dfs command.
MapReduce is a programming model that enables large volumes of data to be processed and generated by dividing work into independent tasks and executing the tasks in parallel across a cluster of machines. The MapReduce programming style was inspired by the functional programming constructs map and reduce, which are commonly used to process lists of data. At a high level, every MapReduce program transforms a list of input data elements into a list of output data elements twice, once in the map phase and once in the reduce phase.

This chapter begins by introducing the MapReduce programming model and describing how data flows through the different phases of the model. Examples then show how MapReduce jobs can be written in Python.

Data Flow

The MapReduce framework is composed of three major phases: map, shuffle and sort, and reduce. This section describes each phase in detail.

Map

The first phase of a MapReduce application is the map phase. Within the map phase, a function (called the mapper) processes a series of key-value pairs. The mapper sequentially processes each
key-value pair individually, producing zero or more output key-value pairs (Figure 2-1).

As an example, consider a mapper whose purpose is to transform sentences into words. The input to this mapper would be strings that contain sentences, and the mapper’s function would be to split the sentences into words and output the words (Figure 2-2).
Shuffle and Sort

The second phase of MapReduce is the shuffle and sort. As the mappers begin completing, the intermediate outputs from the map phase are moved to the reducers. This process of moving output from the mappers to the reducers is known as shuffling.

Shuffling is handled by a partition function, known as the partitioner. The partitioner is used to control the flow of key-value pairs from mappers to reducers. The partitioner is given the mapper’s output key and the number of reducers, and returns the index of the intended reducer. The partitioner ensures that all of the values for the same key are sent to the same reducer. The default partitioner is hash-based. It computes a hash value of the mapper’s output key and assigns a partition based on this result.

The final stage before the reducers start processing data is the sorting process. The intermediate keys and values for each partition are sorted by the Hadoop framework before being presented to the reducer.

Reduce

The third phase of MapReduce is the reduce phase. Within the reducer phase, an iterator of values is provided to a function known as the reducer. The iterator of values is a nonunique set of values for each unique key from the output of the map phase. The reducer aggregates the values for each unique key and produces zero or more output key-value pairs (Figure 2-3).
As an example, consider a reducer whose purpose is to sum all of the values for a key. The input to this reducer is an iterator of all of the values for a key, and the reducer sums all of the values. The reducer then outputs a key-value pair that contains the input key and the sum of the input key values (Figure 2-4).

The next section describes a simple MapReduce application and its implementation in Python.

Hadoop Streaming

Hadoop streaming is a utility that comes packaged with the Hadoop distribution and allows MapReduce jobs to be created with any executable as the mapper and/or the reducer. The Hadoop streaming utility enables Python, shell scripts, or any other language to be used as a mapper, reducer, or both.
How It Works

The mapper and reducer are both executables that read input, line by line, from the standard input (stdin), and write output to the standard output (stdout). The Hadoop streaming utility creates a MapReduce job, submits the job to the cluster, and monitors its progress until it is complete.

When the mapper is initialized, each map task launches the specified executable as a separate process. The mapper reads the input file and presents each line to the executable via stdin. After the executable processes each line of input, the mapper collects the output from stdout and converts each line to a key-value pair. The key consists of the part of the line before the first tab character, and the value consists of the part of the line after the first tab character. If a line contains no tab character, the entire line is considered the key and the value is null.

When the reducer is initialized, each reduce task launches the specified executable as a separate process. The reducer converts the input key-value pair to lines that are presented to the executable via stdin. The reducer collects the executables result from stdout and converts each line to a key-value pair. Similar to the mapper, the executable specifies key-value pairs by separating the key and value by a tab character.

A Python Example

To demonstrate how the Hadoop streaming utility can run Python as a MapReduce application on a Hadoop cluster, the WordCount application can be implemented as two Python programs: mapper.py and reducer.py.

mapper.py is the Python program that implements the logic in the map phase of WordCount. It reads data from stdin, splits the lines into words, and outputs each word with its intermediate count to stdout. The code in Example 2-1 implements the logic in mapper.py.

Example 2-1. python/MapReduce/HadoopStreaming/mapper.py

```python
#!/usr/bin/env python

import sys

# Read each line from stdin
```

reducer.py

The reducer performs the reduce phase of WordCount. It reads data from stdin, accumulates all input lines, and outputs the total count for each word. The code in Example 2-2 implements the logic in reducer.py.

Example 2-2. python/MapReduce/HadoopStreaming/reducer.py

```python
#!/usr/bin/env python

import sys

# Accumulate all input lines
```
for line in sys.stdin:

 # Get the words in each line
 words = line.split()

 # Generate the count for each word
 for word in words:
 # Write the key-value pair to stdout to be processed by
 # the reducer.
 # The key is anything before the first tab character and the
 # value is anything after the first tab character.
 print '{0}	{1}'.format(word, 1)

reducer.py is the Python program that implements the logic in the reduce phase of WordCount. It reads the results of mapper.py from stdin, sums the occurrences of each word, and writes the result to stdout. The code in Example 2-2 implements the logic in reducer.py.

Example 2-2. python/MapReduce/HadoopStreaming/reducer.py

#!/usr/bin/env python

import sys

curr_word = None
curr_count = 0

Process each key-value pair from the mapper
for line in sys.stdin:

 # Get the key and value from the current line
 word, count = line.split('	')

 # Convert the count to an int
 count = int(count)

 # If the current word is the same as the previous word,
 # increment its count, otherwise print the words count
 # to stdout
 if word == curr_word:
 curr_count += count
 else:

 # Write word and its number of occurrences as a key-value
 # pair to stdout
 if curr_word:
 print '{0}	{1}'.format(curr_word, curr_count)

 curr_word = word
curr_count = count

Output the count for the last word
if curr_word == word:
 print '{0}	{1}'.format(curr_word, curr_count)

Before attempting to execute the code, ensure that the `mapper.py` and `reducer.py` files have execution permission. The following command will enable this for both files:

```
$ chmod a+x mapper.py reducer.py
```

Also ensure that the first line of each file contains the proper path to Python. This line enables `mapper.py` and `reducer.py` to execute as standalone executables. The value `#!/usr/bin/env python` should work for most systems, but if it does not, replace `/usr/bin/env python` with the path to the Python executable on your system.

To test the Python programs locally before running them as a MapReduce job, they can be run from within the shell using the `echo` and `sort` commands. It is highly recommended to test all programs locally before running them across a Hadoop cluster.

```
$ echo 'jack be nimble jack be quick' | ./mapper.py | sort -t 1 | ./reducer.py
be    2
jack  2
nimble 1
quick 1
```

Once the mapper and reducer programs are executing successfully against tests, they can be run as a MapReduce application using the Hadoop streaming utility. The command to run the Python programs `mapper.py` and `reducer.py` on a Hadoop cluster is as follows:

```
$ $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/mapred/contrib/streaming/hadoop-streaming*.jar -files mapper.py,reducer.py -mapper mapper.py -reducer reducer.py -input /user/hduser/input.txt -output /user/hduser/output
```

The options used with the Hadoop streaming utility are listed in Table 2-1.
Table 2-1. Options for Hadoop streaming

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-files</td>
<td>A command-separated list of files to be copied to the MapReduce cluster</td>
</tr>
<tr>
<td>-mapper</td>
<td>The command to be run as the mapper</td>
</tr>
<tr>
<td>-reducer</td>
<td>The command to be run as the reducer</td>
</tr>
<tr>
<td>-input</td>
<td>The DFS input path for the Map step</td>
</tr>
<tr>
<td>-output</td>
<td>The DFS output directory for the Reduce step</td>
</tr>
</tbody>
</table>

mrjob

mrjob is a Python MapReduce library, created by Yelp, that wraps Hadoop streaming, allowing MapReduce applications to be written in a more Pythonic manner. mrjob enables multistep MapReduce jobs to be written in pure Python. MapReduce jobs written with mrjob can be tested locally, run on a Hadoop cluster, or run in the cloud using Amazon Elastic MapReduce (EMR).

Writing MapReduce applications with mrjob has many benefits:

- mrjob is currently a very actively developed framework with multiple commits every week.
- mrjob has extensive documentation, more than any other framework or library that supports Python on Hadoop.
- mrjob applications can be executed and tested without having Hadoop installed, enabling development and testing before deploying to a Hadoop cluster.
- mrjob allows MapReduce applications to be written in a single class, instead of writing separate programs for the mapper and reducer.

While mrjob is a great solution, it does have its drawbacks. mrjob is simplified, so it doesn't give the same level of access to Hadoop that other APIs offer. mrjob does not use typedbytes, so other libraries may be faster.

Installation

The installation of mrjob is simple; it can be installed with pip by using the following command:

```
$ pip install mrjob
```
Or it can be installed from source (a git clone):

 $ python setup.py install

WordCount in mrjob

Example 2-3 uses mrjob to implement the WordCount algorithm.

Example 2-3. python/MapReduce/mrjob/word_count.py

```python
from mrjob.job import MRJob

class MRWordCount(MRJob):
    
    def mapper(self, _, line):
        for word in line.split():
            yield(word, 1)

    def reducer(self, word, counts):
        yield(word, sum(counts))

if __name__ == '__main__':
    MRWordCount.run()
```

To run the mrjob locally, the only thing needed is a body of text. To run the job locally and count the frequency of words within a file named *input.txt*, use the following command:

 $ python word_count.py input.txt

The output depends on the contents of the input file, but should look similar to *Example 2-4*.

Example 2-4. Output from word_count.py

```
"be"    2
"jack"    2
"nimble"    1
"quick"    1
```

What Is Happening

The MapReduce job is defined as the class, MRWordCount. Within the mrjob library, the class that inherits from MRJob contains the methods that define the steps of the MapReduce job. The steps within an mrjob application are mapper, combiner, and reducer. The class inheriting MRJob only needs to define one of these steps.
The `mapper()` method defines the mapper for the MapReduce job. It takes key and value as arguments and yields tuples of `(output_key, output_value)`. In the WordCount example (Example 2-4), the mapper ignored the input key and split the input value to produce words and counts.

The `combiner()` method defines the combiner for the MapReduce job. The combiner is a process that runs after the mapper and before the reducer. It receives, as input, all of the data emitted by the mapper, and the output of the combiner is sent to the reducer. The combiner's input is a key, which was yielded by the mapper, and a value, which is a generator that yields all values yielded by one mapper that corresponds to the key. The combiner yields tuples of `(output_key, output_value)` as output.

The `reducer()` method defines the reducer for the MapReduce job. It takes a key and an iterator of values as arguments and yields tuples of `(output_key, output_value)`. In Example 2-4, the reducer sums the value for each key, which represents the frequency of words in the input.

The final component of a MapReduce job written with the mrjob library is the two lines at the end of the file:

```python
if __name__ == '__main__':
    MRWordCount.run()
```

These lines enable the execution of mrjob; without them, the application will not work.

Executing mrjob

Executing a MapReduce application with mrjob is similar to executing any other Python program. The command line must contain the name of the mrjob application and the input file:

```
$ python mr_job.py input.txt
```

By default, mrjob writes output to stdout.

Multiple files can be passed to mrjob as inputs by specifying the filenames on the command line:

```
$ python mr_job.py input1.txt input2.txt input3.txt
```

mrjob can also handle input via stdin:

```
$ python mr_job.py < input.txt
```
By default, mrjob runs locally, allowing code to be developed and debugged before being submitted to a Hadoop cluster.

To change how the job is run, specify the -r/--runner option. Table 2-2 contains a description of the valid choices for the runner options.

Table 2-2. mrjob runner choices

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r inline</td>
<td>(Default) Run in a single Python process</td>
</tr>
<tr>
<td>-r local</td>
<td>Run locally in a few subprocesses simulating some Hadoop features</td>
</tr>
<tr>
<td>-r hadoop</td>
<td>Run on a Hadoop cluster</td>
</tr>
<tr>
<td>-r emr</td>
<td>Run on Amazon Elastic Map Reduce (EMR)</td>
</tr>
</tbody>
</table>

Using the runner option allows the mrjob program to be run on a Hadoop cluster, with input being specified from HDFS:

```
$ python mr_job.py -r hadoop hdfs://input/input.txt
```

mrjob also allows applications to be run on EMR directly from the command line:

```
$ python mr_job.py -r emr s3://input-bucket/input.txt
```

Top Salaries

Example 2-5 uses mrjob to compute employee top annual salaries and gross pay. The dataset used is the salary information from the city of Baltimore for 2014.

Example 2-5. python/MapReduce/mrjob/top_salary.py

```python
from mrjob.job import MRJob
from mrjob.step import MRStep
import csv

cols = ['Name,JobTitle,AgencyID,Agency,HireDate,AnnualSalary,Gross Pay'.split(',

class salarymax(MRJob):
    def mapper(self, _, line):
        # Convert each line into a dictionary
        row = dict(zip(cols, [a.strip() for a in csv.reader([line]).next()]))

        # Yield the salary
```
yield 'salary', (float(row['AnnualSalary'][1:]), line)

Yield the gross pay
try:
 yield 'gross', (float(row['GrossPay'][1:]), line)
except ValueError:
 self.increment_counter('warn', 'missing gross', 1)

def reducer(self, key, values):
 topten = []

 # For 'salary' and 'gross' compute the top 10
 for p in values:
 topten.append(p)
 topten.sort()
 topten = topten[-10:]

 for p in topten:
 yield key, p

combiner = reducer

if __name__ == '__main__':
 salarymax.run()

Use the following command to execute the MapReduce job on Hadoop:

 $ python top_salary.py -r hadoop hdfs:///user/hduser/input/salaries.csv

Chapter Summary

This chapter introduced the MapReduce programming model and described how data flows through the different phases of the model. Hadoop Streaming and mrjob were then used to highlight how MapReduce jobs can be written in Python.
Pig is composed of two major parts: a high-level data flow language called Pig Latin, and an engine that parses, optimizes, and executes the Pig Latin scripts as a series of MapReduce jobs that are run on a Hadoop cluster. Compared to Java MapReduce, Pig is easier to write, understand, and maintain because it is a data transformation language that allows the processing of data to be described as a sequence of transformations. Pig is also highly extensible through the use of the User Defined Functions (UDFs) which allow custom processing to be written in many languages, such as Python.

An example of a Pig application is the Extract, Transform, Load (ETL) process that describes how an application extracts data from a data source, transforms the data for querying and analysis purposes, and loads the result onto a target data store. Once Pig loads the data, it can perform projections, iterations, and other transformations. UDFs enable more complex algorithms to be applied during the transformation phase. After the data is done being processed by Pig, it can be stored back in HDFS.

This chapter begins with an example Pig script. Pig and Pig Latin are then introduced and described in detail with examples. The chapter concludes with an explanation of how Pig’s core features can be extended through the use of Python.
WordCount in Pig

Example 3-1 implements the WordCount algorithm in Pig. It assumes that a data file, input.txt, is loaded in HDFS under /user/hduser/input, and output will be placed in HDFS under /user/hduser/output.

Example 3-1. pig/wordcount.pig

```pig
%default INPUT '/user/hduser/input/input.txt';
%default OUTPUT '/user/hduser/output';

-- Load the data from the file system into the relation records
records = LOAD '$INPUT';

-- Split each line of text and eliminate nesting
terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0)) AS word;

-- Group similar terms
grouped_terms = GROUP terms BY word;

-- Count the number of tuples in each group
word_counts = FOREACH grouped_terms GENERATE COUNT(terms), group;

-- Store the result
STORE word_counts INTO '$OUTPUT';
```

To execute the Pig script, simply call Pig from the command line and pass it the name of the script to run:

```
$ pig wordcount.pig
```

While the job is running, a lot of text will be printed to the console. Once the job is complete, a success message, similar to the one below, will be displayed:

```
2015-09-26 14:15:10,049 [main] INFO org.apache.pig.Main - Pig script completed in 18 seconds and 514 milliseconds (18514 ms)
```

The results of the wordcount.pig script are displayed in Example 3-2 and can be found in HDFS under /user/hduser/output/pig_wordcount/part-r-00000.
Example 3-2. /user/hduser/output/pig_wordcount/part-r-00000

2 be
1 the
3 jack
1 over
1 quick
1 jumped
1 nimble
1 candlestick

WordCount in Detail

This section describes each Pig Latin statement in the wordcount.pig script.

The first statement loads data from the filesystem and stores it in the relation records:

 records = LOAD '/user/hduser/input/input.txt';

The second statement splits each line of text using the TOKENIZE function and eliminates nesting using the FLATTEN operator:

 terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0)) AS word;

The third statement uses the GROUP operator to group the tuples that have the same field:

 grouped_terms = GROUP terms BY word;

The fourth statement iterates over all of the terms in each bag and uses the COUNT function to return the sum:

 word_counts = FOREACH grouped_terms GENERATE COUNT(terms), group;

The fifth and final statement stores the results in HDFS:

 STORE word_counts INTO '/user/hduser/output/pig_wordcount'

Running Pig

Pig contains multiple modes that can be specified to configure how Pig scripts and Pig statements will be executed.

Execution Modes

Pig has two execution modes: local and MapReduce.
Running Pig in local mode only requires a single machine. Pig will run on the local host and access the local filesystem. To run Pig in local mode, use the `-x local` flag:

```
$ pig -x local ...
```

Running Pig in MapReduce mode requires access to a Hadoop cluster. MapReduce mode executes Pig statements and jobs on the cluster and accesses HDFS. To run Pig in MapReduce mode, simply call Pig from the command line or use the `-x mapreduce` flag:

```
$ pig ...
or
$ pig -x mapreduce ...
```

Interactive Mode

Pig can be run interactively in the Grunt shell. To invoke the Grunt shell, simply call Pig from the command line and specify the desired execution mode. The following example starts the Grunt shell in local mode:

```
pig -x local ...
grunt>
```

Once the Grunt shell is initialized, Pig Latin statements can be entered and executed in an interactive manner. Running Pig interactively is a great way to learn Pig.

The following example reads `/etc/passwd` and displays the usernames from within the Grunt shell:

```
grunt> A = LOAD '/etc/passwd' using PigStorage(':');
grunt> B = FOREACH A GENERATE $0 as username;
grunt> DUMP B;
```

Batch Mode

Batch mode allows Pig to execute Pig scripts in local or MapReduce mode.

The Pig Latin statements in Example 3-3 read a file named `passwd` and use the `STORE` operator to store the results in a directory called `user_id.out`. Before executing this script, ensure that `/etc/passwd` is copied to the current working directory if Pig will be run in local mode, or to HDFS if Pig will be executed in MapReduce mode.

30 | Chapter 3: Pig and Python
Example 3-3. pig/user_id.pig

A = LOAD 'passwd' using PigStorage(':');
B = FOREACH A GENERATE $0 as username;
STORE B INTO 'user_id.out';

Use the following command to execute the user_id.pig script on the local machine:

$ pig -x local user_id.pig

Pig Latin

This section describes the basic concepts of the Pig Latin language, allowing those new to the language to understand and write basic Pig scripts. For a more comprehensive overview of the language, visit the Pig online documentation.

All of the examples in this section load and process data from the tab-delimited file, resources/students (Example 3-4).

Example 3-4. resources/students

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>john</td>
<td>21</td>
<td>3.89</td>
</tr>
<tr>
<td>sally</td>
<td>19</td>
<td>2.56</td>
</tr>
<tr>
<td>alice</td>
<td>22</td>
<td>3.76</td>
</tr>
<tr>
<td>doug</td>
<td>19</td>
<td>1.98</td>
</tr>
<tr>
<td>susan</td>
<td>26</td>
<td>3.25</td>
</tr>
</tbody>
</table>

Statements

Statements are the basic constructs used to process data in Pig. Each statement is an operator that takes a relation as an input, performs a transformation on that relation, and produces a relation as an output. Statements can span multiple lines, but all statements must end with a semicolon (;).

The general form of each Pig script is as follows:

1. A LOAD statement that reads the data from the filesystem
2. One or more statements to transform the data
3. A DUMP or STORE statement to view or store the results, respectively
Loading Data

The LOAD operator is used to load data from the system into Pig. The format of the LOAD operator is as follows:

```
LOAD 'data' [USING function] [AS schema];
```

Where 'data' is the name of the file or directory, in quotes, to be loaded. If a directory name is not specified, all of the files within the directory are loaded.

The USING keyword is optional and is used to specify a function to parse the incoming data. If the USING keyword is omitted, the default loading function, PigStorage, is used. The default delimiter is the tab character (‘\t’).

The AS keyword allows a schema to be defined for the data being loaded. Schemas enable names and datatypes to be declared for individual fields. The following example defines a schema for the data being loaded from the file `input.txt`. If no schema is defined, the fields are not named and default to type `bytearray`.

```
A = LOAD 'students' AS (name:chararray, age:int);
DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)
```

Transforming Data

Pig contains many operators that enable complex transforming of data. The most common operators are FILTER, FOREACH, and GROUP.

FILTER

The FILTER operator works on tuples or rows of data. It selects tuples from a relation based on a condition.

The following examples use the relation A that contains student data:

```
A = LOAD 'students' AS (name:chararray, age:int, gpa:float);
DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
```
The following example filters out any students under the age of 20, and stores the results in a relation R:

\[
R = \text{FILTER } A \text{ BY } \text{age} \geq 20; \\
\text{DUMP } R; \\
\text{(john,21,3.89)} \\
\text{(alice,22,3.76)} \\
\text{(susan,26,3.25)}
\]

Condition statements can use the AND, OR, and NOT operators to create more complex FILTER statements. The following example filters out any students with an age less than 20 or a GPA less than or equal to 3.5, and stores the results in a relation R:

\[
R = \text{FILTER } A \text{ BY } \text{(age} \geq 20) \text{ AND } \text{(gpa} > 3.5) \\
\text{DUMP } R; \\
\text{(john,21,3.89)} \\
\text{(alice,22,3.76)}
\]

FOREACH

While the FILTER operator works on rows of data, the FOREACH operator works on columns of data and is similar to the SELECT statement in SQL.

The following example uses the asterisk (*) to project all of the fields from relation A onto relation X:

\[
R = \text{FOREACH } A \text{ GENERATE } *; \\
\text{DUMP } R; \\
\text{(john,21,3.89)} \\
\text{(sally,19,2.56)} \\
\text{(alice,22,3.76)} \\
\text{(doug,19,1.98)} \\
\text{(susan,26,3.25)}
\]

The following example uses field names to project the age and gpa columns from relation A onto relation X:

\[
R = \text{FOREACH } A \text{ GENERATE } \text{age, gpa;} \\
\text{DUMP } R; \\
\text{(21,3.89)} \\
\text{(19,2.56)} \\
\text{(22,3.76)}
\]
GROUP

The GROUP operator groups together tuples that have the same group key into one or more relations.

The following example groups the student data by age and stores the result into relation B:

\[
B = \text{GROUP A BY age;}
\]

\[
\text{DUMP B;}
(19,((\text{doug},19,1.98), (\text{sally},19,2.56))))
(21,((\text{john},21,3.89))))
(22,((\text{alice},22,3.76))))
(26,((\text{susan},26,3.25))))
\]

The result of a GROUP operation is a relation that has one tuple per group. This tuple has two fields: the first field is named group and is of the type of the grouped key; the second field is a bag that takes the name of the original relation. To clarify the structure of relation B, the DESCRIBE and ILLUSTRATE operations can be used:

\[
\text{DESCRIBE B;}
B: \{\text{group: int}, A: \{(\text{name: chararray, age: int, gpa: float})\}}}
\]

\[
\text{ILLUSTRATE B;}
<table>
<thead>
<tr>
<th>B</th>
<th>group: int</th>
<th>A: bag{{tuple(name:chararray, age:int,gpa:float)}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>(sally, 19, 2.56), (doug, 19, 1.98)</td>
<td></td>
</tr>
</tbody>
</table>

Using the FOREACH operator, the fields in the previous relation, B, can be referred to by names group and A:

\[
C = \text{FOREACH B GENERATE group, A.name;}
\]

\[
\text{DUMP C;}
(19,((\text{doug}),(\text{sally})))
(21,((\text{john})))
(22,((\text{alice})))
(26,((\text{susan})))
\]
Storing Data

The STORE operator is used to execute previous Pig statements and store the results on the filesystem. The format of the STORE operator is as follows:

\[
\text{STORE alias INTO 'directory' [USING function];}
\]

Where alias is the name of the relation to store, and 'directory' is the name of the storage directory, in quotes. If the directory already exists, the STORE operation will fail. The output files will be named \(\text{part-nnnnn} \) and are written to the specified directory.

The USING keyword is optional and is used to specify a function to store the data. If the USING keyword is omitted, the default storage function, PigStorage, is used. The following example specifies the PigStorage function to store a file with pipe-delimited fields:

\[
A = \text{LOAD 'students' AS (name:chararray, age:int, gpa:float);} \\
\text{DUMP A;} \\
(john,21,3.89) \\
(sally,19,2.56) \\
(alice,22,3.76) \\
(doug,19,1.98) \\
(susan,26,3.25) \\
\text{STORE A INTO 'output' USING PigStorage('|');} \\
\text{CAT output;} \\
john|21|3.89 \\
sally|19|2.56 \\
alice|22|3.76 \\
doug|19|1.98 \\
susan|26|3.25
\]

The provided Pig Latin statements are great general-purpose computing constructs, but are not capable of expressing complex algorithms. The next section describes how to extend the functionality of Pig with Python.

Extending Pig with Python

Pig provides extensive support for custom processing through User Defined Functions (UDFs). Pig currently supports UDFs in six languages: Java, Jython, Python, JavaScript, Ruby, and Groovy.
When Pig executes, it automatically detects the usage of a UDF. To run Python UDFs, Pig invokes the Python command line and streams data in and out of it.

Registering a UDF

Before a Python UDF can be used in a Pig script, it must be registered so Pig knows where to look when the UDF is called. To register a Python UDF file, use Pig's REGISTER statement:

```
REGISTER 'udfs/myudf.py' USING streaming_python AS my_udf;
```

Once the UDF is registered, it can be called from within the Pig script:

```
relation = FOREACH data GENERATE my_udf.function(field);
```

In this example the UDF, referenced as `my_udf`, contains a function called `function`.

A Simple Python UDF

A simple Python UDF, located in `pig/udfs/my_first_udf.py`, that returns the integer value 1 each time it is called, is shown in Example 3-5.

Example 3-5. pig/udfs/my_first_udf.py

```python
from pig.util import outputSchema

@outputSchema('value:int')
def return_one():
    """
    Return the integer value 1
    """
    return 1
```

Some important things to note in this Python script are the `from` statement on the first line, and the output decorator, `@outputSchema` decorator, on the third line. These lines enable the Python UDF to define an alias and datatype for the data being returned from the UDF.

The Pig script in Example 3-6 registers the Python UDF and calls the `return_one()` function in a FOREACH statement.
Example 3-6. pig/simple_udf.pig

```pig
REGISTER 'udfs/my_first_udf.py' USING streaming_python AS pyudfs;

A = LOAD '../resources/input.txt';
B = FOREACH A GENERATE pyudfs.return_one();
DUMP B;
```

When the Pig script is executed, it will generate an integer value 1 for each line in the input file. Use the following command to execute the script (sample output is shown as well):

```
$ pig -x local simple_udf.pig
...
(1)
(1)
(1)
```

String Manipulation

Python UDFs are an easy way of extending Pig's functionality and an easy way to transform and process data.

The Python UDF in Example 3-7 contains two functions: `reverse()` and `num_chars()`. The `reverse()` function takes in a chararray and returns the chararray in reverse order. The `num_chars()` function takes in a chararray and returns the number of characters in the chararray.

Example 3-7. pig/udfs/string_funcs.py

```python
from pig_util import outputSchema

@outputSchema('word:chararray')
def reverse(word):
    """
    Return the reverse text of the provided word
    """
    return word[::-1]

@outputSchema('length:int')
def num_chars(word):
    """
    Return the length of the provided word
    """
    return len(word)
```
The Pig script in Example 3-8 loads a text file and applies the reverse() and num_chars() Python functions to each unique word.

Example 3-8. pig/playing_with_words.pig

```
REGISTER 'udfs/string_funcs.py' USING streaming_python AS string_udf;

-- Load the data from the file system
records = LOAD '../resources/input.txt';

-- Split each line of text and eliminate nesting
terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0)) AS word;

-- Group similar terms
grouped_terms = GROUP terms BY word;

-- Count the number of tuples in each group
unique_terms = FOREACH grouped_terms GENERATE group as word;

-- Calculate the number of characters in each term
term_length = FOREACH unique_terms GENERATE word, string_udf.num_chars(word) as length;

-- Display the terms and their length
DUMP term_length;

-- Reverse each word
reverse_terms = FOREACH unique_terms GENERATE word, string_udf.reverse(word) as reverse_word;

-- Display the terms and the reverse terms
DUMP reverse_terms;
```

Use the following command to execute the script (sample output shown):

```
$ pig -x local playing_with_words.pig
...
(be,2)
(the,3)
(jack,4)
(over,4)
(quick,5)
(jumped,6)
(nimble,6)
(candlestick,11)
...
(be,eb)
```
Most Recent Movies

The following example uses movie data from the groupLens datasets and external libraries to calculate the 10 most recent movies.

The Python UDF in Example 3-9 contains two functions: `parse_title()` and `days_since_release()`. The `parse_title()` function uses Python's regular expression module to remove the release year from a movie's title. The `days_since_release()` function uses the `datetime` module to calculate the number of days between the current day and a movie's release date.

Example 3-9. pig/udfs/movies_udf.py

```python
from pig_util import outputSchema
from datetime import datetime
import re

@outputSchema('title:chararray')
def parse_title(title):
    """
    Return the title without the year
    """
    return re.sub(r'\s*\(\d{4}\)', '', title)

@outputSchema('days_since_release:int')
def days_since_release(date):
    """
    Calculate the number of days since the title's release
    """
    if date is None:
        return None

    today = datetime.today()
    release_date = datetime.strptime(date, '%d-%b-%Y')
    delta = today - release_date
    return delta.days
```
The Pig script in Example 3-10 uses the Python UDFs to determine the 10 most recent movies.

Example 3-10. pig/recent_movies.pig

```pig
REGISTER 'udfs/movies_udf.py' USING streaming_python AS movies_udf;

-- Load the data from the file system
records = LOAD '../resources/movies' USING PigStorage('|') AS (id:int, title:chararray, release_date:chararray);

-- Parse the titles and determine how many days since the release date
titles = FOREACH records GENERATE movies_udf.parse_title(title), movies_udf.days_since_release(release_date);

-- Order the movies by the time since release
most_recent = ORDER titles BY days_since_release ASC;

-- Get the ten most recent movies
top_ten = LIMIT most_recent 10;

-- Display the top ten most recent movies
DUMP top_ten;
```

The following command is used to execute the script (sample output shown):

```bash
$ pig -x local recent_movies.pig

(unknown,)
(Apt Pupil,6183)
(Mighty, The,6197)
(City of Angels,6386)
(Big One, The,6393)
(Lost in Space,6393)
(Mercury Rising,6393)
(Spanish Prisoner, The,6393)
(Hana-bi,6400)
(Object of My Affection, The,6400)
```

Chapter Summary

This chapter introduced and Pig and Pig Latin. It described the basic concepts of Pig Latin, allowing simple Pig scripts to be created and executed. It also introduced how to extend the functionality of Pig Latin with Python UDFs.
Spark is a cluster computing framework that uses in-memory primitives to enable programs to run up to a hundred times faster than Hadoop MapReduce applications. Spark applications consist of a driver program that controls the execution of parallel operations across a cluster. The main programming abstraction provided by Spark is known as Resilient Distributed Datasets (RDDs). RDDs are collections of elements partitioned across the nodes of the cluster that can be operated on in parallel.

Spark was created to run on many platforms and be developed in many languages. Currently, Spark can run on Hadoop 1.0, Hadoop 2.0, Apache Mesos, or a standalone Spark cluster. Spark also natively supports Scala, Java, Python, and R. In addition to these features, Spark can be used interactively from a command-line shell.

This chapter begins with an example Spark script. PySpark is then introduced, and RDDs are described in detail with examples. The chapter concludes with example Spark programs written in Python.

WordCount in PySpark

The code in Example 4-1 implements the WordCount algorithm in PySpark. It assumes that a data file, `input.txt`, is loaded in HDFS under `/user/hduser/input`, and the output will be placed in HDFS under `/user/hduser/output`.

CHAPTER 4

Spark with Python
Example 4-1. python/Spark/word_count.py

```python
from pyspark import SparkContext

def main():
    sc = SparkContext(appName='SparkWordCount')

    input_file = sc.textFile('/user/hduser/input/input.txt')
    counts = input_file.flatMap(lambda line: line.split())
                      .map(lambda word: (word, 1))
                      .reduceByKey(lambda a, b: a + b)
    counts.saveAsTextFile('/user/hduser/output')

    sc.stop()

if __name__ == '__main__':
    main()

To execute the Spark application, pass the name of the file to the 
spark-submit script:

    $ spark-submit --master local word_count.py

While the job is running, a lot of text will be printed to the console. 
The results of a word_count.py Spark script are displayed in 
Example 4-2 and can be found in HDFS under /user/hduser/output/ 
part-00000.

Example 4-2. /user/hduser/output/part-00000

(u'be', 2)
(u'jumped', 1)
(u'over', 1)
(u'candlestick', 1)
(u'nimble', 1)
(u'jack', 3)
(u'quick', 1)
(u'the', 1)

WordCount Described

This section describes the transformations being applied in the 
word_count.py Spark script.

The first statement creates a SparkContext object. This object tells 
Spark how and where to access a cluster:

    sc = SparkContext(appName='SparkWordCount')
The second statement uses the SparkContext to load a file from HDFS and store it in the variable `input_file`:

```python
input_file = sc.textFile('/user/hduser/input/input.txt')
```

The third statement performs multiple transformations on the input data. Spark automatically parallelizes these transformations to run across multiple machines:

```python
counts = input_file.flatMap(lambda line: line.split())
 .map(lambda word: (word, 1))
 .reduceByKey(lambda a, b: a + b)
```

The fourth statement stores the results to HDFS:

```python
counts.saveAsTextFile('/user/hduser/output')
```

The fifth statement shuts down the SparkContext:

```python
sc.stop()
```

**PySpark**

PySpark is Spark's Python API. PySpark allows Spark applications to be created from an interactive shell or from Python programs.

Before executing any code within Spark, the application must create a SparkContext object. The SparkContext object tells Spark how and where to access a cluster. The `master` property is a cluster URL that determines where the Spark application will run. The most common values for `master` are:

- **local**
  - Run Spark with one worker thread.

- **local[n]**
  - Run Spark with `n` worker threads.

- **spark://HOST:PORT**
  - Connect to a Spark standalone cluster.

- **mesos://HOST:PORT**
  - Connect to a Mesos cluster.

**Interactive Shell**

In the Spark shell, the SparkContext is created when the shell launches. The SparkContext is held in the variable `sc`. The master
for the interactive shell can be set by using the `--master` argument when the shell is launched. To start an interactive shell, run the `pyspark` command:

```sh
$ pyspark --master local[4]
...
Welcome to
 __ __
 / __/__ ___ _____/ /__
/_ \/ _ \ / _ `/ __/ '_/
/ __ \ . __/ _,/_/ /_/
/_/ ___/___\/
Using Python version 2.7.10 (default, Jul 13 2015 12:05:58)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
```

For a complete list of options, run `pyspark --help`.

### Self-Contained Applications

Self-contained applications must first create a SparkContext object before using any Spark methods. The master can be set when the `SparkContext()` method is called:

```python
sc = SparkContext(master='local[4]')
```

To execute self-contained applications, they must be submitted to the `spark-submit` script. The `spark-submit` script contains many options; to see a complete listing, run `spark-submit --help` from the command line:

```sh
$ spark-submit --master local spark_app.py
```

### Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDDs) are the fundamental programming abstraction in Spark. RDDs are immutable collections of data, partitioned across machines, that enable operations to be performed on elements in parallel. RDDs can be constructed in multiple ways: by parallelizing existing Python collections, by referencing files in an external storage system such as HDFS, or by applying transformations to existing RDDs.
Creating RDDs from Collections

RDDs can be created from a Python collection by calling the Spark Context.parallelize() method. The elements of the collection are copied to form a distributed dataset that can be operated on in parallel. The following example creates a parallelized collection from a Python list:

```python
>>> data = [1, 2, 3, 4, 5]
>>> rdd = sc.parallelize(data)
>>> rdd.glom().collect()
...
[[1, 2, 3, 4, 5]]
```

The RDD.glom() method returns a list of all of the elements within each partition, and the RDD.collect() method brings all the elements to the driver node. The result, `[[1, 2, 3, 4, 5]]`, is the original collection within a list.

To specify the number of partitions an RDD should be created with, a second argument can be passed to the parallelize() method. The following example creates an RDD from the same Python collection in the previous example, except this time four partitions are created:

```python
>>> rdd = sc.parallelize(data, 4)
>>> rdd.glom().collect()
...
[[1], [2], [3], [4, 5]]
```

Using the glom() and collect() methods, the RDD created in this example contains four inner lists: [1], [2], [3], and [4, 5]. The number of inner lists represents the number of partitions within the RDD.

Creating RDDs from External Sources

RDDs can also be created from files using the SparkContext.textFile() method. Spark can read files residing on the local filesystem, any storage source supported by Hadoop, Amazon S3, and so on. Spark supports text files, SequenceFiles, any other Hadoop InputFormat, directories, compressed files, and wildcards, e.g., `my/directory/*.txt`. The following example creates a distributed dataset from a file located on the local filesystem:
>>> distFile = sc.textFile('data.txt')
>>> distFile.glom().collect()
...
[[u'jack be nimble', u'jack be quick', u'jack jumped over the candlestick']]

As before, the `glom()` and `collect()` methods allow the RDD to be displayed in its partitions. This result shows that `distFile` only has a single partition.

Similar to the `parallelize()` method, the `textFile()` method takes a second parameter that specifies the number of partitions to create. The following example creates an RDD with three partitions from the input file:

```python
>>> distFile = sc.textFile('data.txt', 3)
>>> distFile.glom().collect()
...
[[u'jack be nimble', u'jack be quick'], [u'jack jumped over the candlestick'], []]
```

**RDD Operations**

RDDs support two types of operations: transformations and actions. Transformations create new datasets from existing ones, and actions run a computation on the dataset and return results to the driver program.

Transformations are lazy: that is, their results are not computed immediately. Instead, Spark remembers all of the transformations applied to a base dataset. Transformations are computed when an action requires a result to be returned to the driver program. This allows Spark to operate efficiently and only transfer the results of the transformations before an action.

By default, transformations may be recomputed each time an action is performed on it. This allows Spark to efficiently utilize memory, but it may utilize more processing resources if the same transformations are constantly being processed. To ensure a transformation is only computed once, the resulting RDD can be persisted in memory using the `RDD.cache()` method.
RDD Workflow

The general workflow for working with RDDs is as follows:

1. Create an RDD from a data source.
2. Apply transformations to an RDD.
3. Apply actions to an RDD.

The following example uses this workflow to calculate the number of characters in a file:

```python
>>> lines = sc.textFile('data.txt')
>>> line_lengths = lines.map(lambda x: len(x))
>>> document_length = line_lengths.reduce(lambda x,y: x+y)
>>> print document_length
59
```

The first statement creates an RDD from the external file `data.txt`. This file is not loaded at this point; the variable `lines` is just a pointer to the external source. The second statement performs a transformation on the base RDD by using the `map()` function to calculate the number of characters in each line. The variable `line_lengths` is not immediately computed due to the laziness of transformations. Finally, the `reduce()` method is called, which is an action. At this point, Spark divides the computations into tasks to run on separate machines. Each machine runs both the map and reduction on its local data, returning only the results to the driver program.

If the application were to use `line_lengths` again, it would be best to persist the result of the map transformation to ensure that the map would not be recomputed. The following line will save `line_lengths` into memory after the first time it is computed:

```python
>>> line_lengths.persist()
```

Python Lambda Functions

Many of Spark's transformations and actions require function objects to be passed from the driver program to run on the cluster. The easiest way to define and pass a function is through the use of Python lambda functions.

Lambda functions are anonymous functions (i.e., they do not have a name) that are created at runtime. They can be used wherever function objects are required and are syntactically restricted to a single...
expression. The following example shows a lambda function that returns the sum of its two arguments:

```python
lambda a, b: a + b
```

Lambdas are defined by the keyword `lambda`, followed by a comma-separated list of arguments. A colon separates the function declaration from the function expression. The function expression is a single expression that produces a result for the provided arguments.

In the previous Spark example, the `map()` function uses the following lambda function:

```python
lambda x: len(x)
```

This lambda has one argument and returns the length of the argument.

**Transformations**

Transformations create new datasets from existing ones. Lazy evaluation of transformation allows Spark to remember the set of transformations applied to the base RDD. This enables Spark to optimize the required calculations.

This section describes some of Spark’s most common transformations. For a full listing of transformations, refer to Spark’s Python RDD API doc.

**map.** The `map(func)` function returns a new RDD by applying a function, `func`, to each element of the source. The following example multiplies each element of the source RDD by two:

```python
>>> data = [1, 2, 3, 4, 5, 6]
>>> rdd = sc.parallelize(data)
>>> map_result = rdd.map(lambda x: x * 2)
>>> map_result.collect()
[2, 4, 6, 8, 10, 12]
```

**filter.** The `filter(func)` function returns a new RDD containing only the elements of the source that the supplied function returns as true. The following example returns only the even numbers from the source RDD:

```python
>>> data = [1, 2, 3, 4, 5, 6]
>>> filter_result = rdd.filter(lambda x: x % 2 == 0)
>>> filter_result.collect()
[2, 4, 6]
```
**distinct.** The `distinct()` method returns a new RDD containing only the distinct elements from the source RDD. The following example returns the unique elements in a list:

```python
>>> data = [1, 2, 3, 2, 4, 1]
>>> rdd = sc.parallelize(data)
>>> distinct_result = rdd.distinct()
>>> distinct_result.collect()
[4, 1, 2, 3]
```

**flatMap.** The `flatMap(func)` function is similar to the `map()` function, except it returns a flattened version of the results. For comparison, the following examples return the original element from the source RDD and its square. The example using the `map()` function returns the pairs as a list within a list:

```python
>>> data = [1, 2, 3, 4]
>>> rdd = sc.parallelize(data)
>>> map = rdd.map(lambda x: [x, pow(x,2)])
>>> map.collect()
[[1, 1], [2, 4], [3, 9], [4, 16]]
```

While the `flatMap()` function concatenates the results, returning a single list:

```python
>>> rdd = sc.parallelize()
>>> flat_map = rdd.flatMap(lambda x: [x, pow(x,2)])
>>> flat_map.collect()
[1, 1, 2, 4, 3, 9, 4, 16]
```

**Actions**

Actions cause Spark to compute transformations. After transforms are computed on the cluster, the result is returned to the driver program.

The following section describes some of Spark’s most common actions. For a full listing of actions, refer to Spark’s Python RDD API doc.

**reduce.** The `reduce()` method aggregates elements in an RDD using a function, which takes two arguments and returns one. The function used in the reduce method is commutative and associative, ensuring that it can be correctly computed in parallel. The following example returns the product of all of the elements in the RDD:

```python
>>> data = [1, 2, 3]
>>> rdd = sc.parallelize(data)
```
take. The `take(n)` method returns an array with the first `n` elements of the RDD. The following example returns the first two elements of an RDD:

```python
>>> data = [1, 2, 3]
>>> rdd = sc.parallelize(data)
>>> rdd.take(2)
[1, 2]
```

collect. The `collect()` method returns all of the elements of the RDD as an array. The following example returns all of the elements from an RDD:

```python
>>> data = [1, 2, 3, 4, 5]
>>> rdd = sc.parallelize(data)
>>> rdd.collect()
[1, 2, 3, 4, 5]
```

It is important to note that calling `collect()` on large datasets could cause the driver to run out of memory. To inspect large RDDs, the `take()` and `collect()` methods can be used to inspect the top `n` elements of a large RDD. The following example will return the first 100 elements of the RDD to the driver:

```python
>>> rdd.take(100).collect()
```

takeOrdered. The `takeOrdered(n, key=func)` method returns the first `n` elements of the RDD, in their natural order, or as specified by the function `func`. The following example returns the first four elements of the RDD in descending order:

```python
>>> data = [6,1,5,2,4,3]
>>> rdd = sc.parallelize(data)
>>> rdd.takeOrdered(4, lambda s: -s)
[6, 5, 4, 3]
```

Text Search with PySpark

The text search program searches for movie titles that match a given string (Example 4-3). The movie data is from the groupLens datasets; the application expects this to be stored in HDFS under `/user/hduser/input/movies`. 

---

50 | Chapter 4: Spark with Python
Example 4-3. python/Spark/text_search.py

```python
from pyspark import SparkContext
import re
import sys

def main():
 # Insure a search term was supplied at the command line
 if len(sys.argv) != 2:
 sys.stderr.write('Usage: {} <search_term>
 sys.exit()

 # Create the SparkContext
 sc = SparkContext(appName='SparkWordCount')

 # Broadcast the requested term
 requested_movie = sc.broadcast(sys.argv[1])

 # Load the input file
 source_file = sc.textFile('/user/hduser/input/movies')

 # Get the movie title from the second fields
 titles = source_file.map(lambda line: line.split('|')[1])

 # Create a map of the normalized title to the raw title
 normalized_title = titles.map(lambda title: (re.sub(r'\s*\((\d{4})\)', '', title).lower(), title))

 # Find all movies matching the requested_movie
 matches = normalized_title.filter(lambda x: requested_movie.value in x[0])

 # Collect all the matching titles
 matching_titles = matches.map(lambda x: x[1]).distinct().collect()

 # Display the result
 print('{} Matching titles found:'.format(len(matching_titles))
 for title in matching_titles:
 print title

 sc.stop()

if __name__ == '__main__':
 main()
```

The Spark application can be executed by passing to the spark-submit script the name of the program, `text_search.py`, and the term
for which to search. A sample run of the application can be seen here:

```bash
$ spark-submit text_search.py gold
...
6 Matching titles found:
 GoldenEye (1995)
 On Golden Pond (1981)
 Ulee's Gold (1997)
 City Slickers II: The Legend of Curly's Gold (1994)
 Golden Earrings (1947)
...
```

Since computing the transformations can be a costly operation, Spark can cache the results of the `normalized_titles` to memory to speed up future searches. From the example above, to load the `normalized_titles` into memory, use the `cache()` method:

```python
normalized_title.cache()
```

## Chapter Summary

This chapter introduced Spark and and PySpark. It described Spark's main programming abstraction, RDDs, with many examples of dataset transformations. This chapter also contained a Spark application that returned movie titles that matched a given string.
The most popular workflow scheduler to manage Hadoop jobs is arguably Apache Oozie. Like many other Hadoop products, Oozie is written in Java, and is a server-based web application that runs workflow jobs that execute Hadoop MapReduce and Pig jobs. An Oozie workflow is a collection of actions arranged in a control dependency directed acyclic graph (DAG) specified in an XML document. While Oozie has a lot of support in the Hadoop community, configuring workflows and jobs through XML attributes has a steep learning curve.

Luigi is a Python alternative, created by Spotify, that enables complex pipelines of batch jobs to be built and configured. It handles dependency resolution, workflow management, visualization, and much more. It also has a large community and supports many Hadoop technologies.

This chapter begins with the installation of Luigi and a detailed description of a workflow. Multiple examples then show how Luigi can be used to control MapReduce and Pig jobs.

**Installation**

Luigi is distributed through PyPI and can be installed using pip:

```
$ pip install luigi
```
Or it can be installed from source:

```
$ git clone https://github.com/spotify/luigi
$ python setup.py install
```

## Workflows

Within Luigi, a workflow consists of a pipeline of actions, called tasks. Luigi tasks are nonspecific, that is, they can be anything that can be written in Python. The locations of input and output data for a task are known as targets. Targets typically correspond to locations of files on disk, on HDFS, or in a database. In addition to tasks and targets, Luigi utilizes parameters to customize how tasks are executed.

## Tasks

Tasks are the sequences of actions that comprise a Luigi workflow. Each task declares its dependencies on targets created by other tasks. This enables Luigi to create dependency chains that ensure a task will not be executed until all of the dependent tasks and all of the dependencies for those tasks are satisfied.

Figure 5-1 depicts a workflow highlighting Luigi tasks and their dependencies.

![Figure 5-1. A Luigi task dependency diagram illustrates the flow of work up a pipeline and the dependencies between tasks](image-url)
Target

Targets are the inputs and outputs of a task. The most common targets are files on a disk, files in HDFS, or records in a database. Luigi wraps the underlying filesystem operations to ensure that interactions with targets are atomic. This allows a workflow to be replayed from the point of failure without having to replay any of the already successfully completed tasks.

Parameters

Parameters allow the customization of tasks by enabling values to be passed into a task from the command line, programmatically, or from another task. For example, the name of a task’s output may be determined by a date passed into the task through a parameter.

An Example Workflow

This section describes a workflow that implements the WordCount algorithm to explain the interaction among tasks, targets, and parameters. The complete workflow is shown in Example 5-1.

Example 5-1. /python/Luigi/wordcount.py

```python
import luigi

class InputFile(luigi.Task):
 """
 A task wrapping a target
 """
 input_file = luigi.Parameter()

 def output(self):
 """
 Return the target for this task
 """
 return luigi.LocalTarget(self.input_file)

class WordCount(luigi.Task):
 """
 A task that counts the number of words in a file
 """
 input_file = luigi.Parameter()
 output_file = luigi.Parameter(default='/tmp/wordcount')

 def requires(self):
 """
```
The task's dependencies:

```python
return InputFile(self.input_file)
```  

```python
def output(self):

 The task's output

 return luigi.LocalTarget(self.output_file)
```  

```python
def run(self):

 The task's logic

 count = {}

 ifp = self.input().open('r')

 for line in ifp:
 for word in line.strip().split():
 count[word] = count.get(word, 0) + 1

 ofp = self.output().open('w')
 for k, v in count.items():
 ofp.write('{}	{}
'.format(k, v))
 ofp.close()

 if __name__ == '__main__':
 luigi.run()
```

This workflow contains two tasks: InputFile and WordCount. The InputFile task returns the input file to the WordCount task. The WordCount tasks then counts the occurrences of each word in the input file and stores the results in the output file.

Within each task, the requires(), output(), and run() methods can be overridden to customize a task's behavior.

**Task.requires**

The requires() method is used to specify a task's dependencies. The WordCount task requires the output of the InputFile task:

```python
def requires(self):
 return InputFile(self.input_file)
```  

It is important to note that the requires() method cannot return a Target object. In this example, the Target object is wrapped in the InputFile task. Calling the InputFile task with the
self.input_file argument enables the input_file parameter to be passed to the InputFile task.

**Task.output**

The output() method returns one or more Target objects. The InputFile task returns the Target object that was the input for the WordCount task:

```python
def output(self):
 return luigi.LocalTarget(self.input_file)
```

The WordCount task returns the Target object that was the output for the workflow:

```python
def output(self):
 return luigi.LocalTarget(self.output_file)
```

**Task.run**

The run() method contains the code for a task. After the requires() method completes, the run() method is executed. The run() method for the WordCount task reads data from the input file, counts the number of occurrences, and writes the results to an output file:

```python
def run(self):
 count = {}

 ifp = self.input().open('r')

 for line in ifp:
 for word in line.strip().split():
 count[word] = count.get(word, 0) + 1

 ofp = self.output().open('w')
 for k, v in count.items():
 ofp.write('{}	{}
'.format(k, v))
 ofp.close()
```

The input() and output() methods are helper methods that allow the task to read and write to Target objects in the requires() and output() methods, respectively.
Parameters

Parameters enable values to be passed into a task, customizing the task’s execution. The WordCount task contains two parameters: `input_file` and `output_file`:

```python
class WordCount(luigi.Task):
 input_file = luigi.Parameter()
 output_file = luigi.Parameter(default='/tmp/wordcount')
```

Default values can be set for parameters by using the `default` argument.

Luigi creates a command-line parser for each `Parameter` object, enabling values to be passed into the Luigi script on the command line, e.g., `--input-file input.txt` and `--output-file /tmp/output.txt`.

Execution

To enable execution from the command line, the following lines must be present in the application:

```python
if __name__ == '__main__':
 luigi.run()
```

This will enable Luigi to read commands from the command line.

The following command will execute the workflow, reading from `input.txt` and storing the results in `/tmp/wordcount.txt`:

```
$ python wordcount.py WordCount \
 --local-scheduler \
 --input-file input.txt \
 --output-file /tmp/wordcount.txt
```

Hadoop Workflows

This section contains workflows that control MapReduce and Pig jobs on a Hadoop cluster.

Configuration File

The examples in this section require a Luigi configuration file, `client.cfg`, to specify the location of the Hadoop streaming jar and the path to the Pig home directory. The config files should be in the cur-
rent working directory, and an example of a config file is shown in Example 5-2.

Example 5-2. python/Luigi/client.cfg

```
[hadoop]
streaming-jar: /usr/lib/hadoop-xyz/hadoop-streaming-xyz-123.jar

[pig]
home: /usr/lib/pig
```

MapReduce in Luigi

Luigi scripts can control the execution of MapReduce jobs on a Hadoop cluster by using Hadoop streaming (Example 5-3).

Example 5-3. python/Luigi/luigi_mapreduce.py

```python
import luigi
import luigi.contrib.hadoop
import luigi.contrib.hdfs

class InputFile(luigi.ExternalTask):

 # A task wrapping the HDFS target
 input_file = luigi.Parameter()

 def output(self):

 # Return the target on HDFS
 return luigi.contrib.hdfs.HdfsTarget(self.input_file)

class WordCount(luigi.contrib.hadoop.JobTask):

 # A task that uses Hadoop streaming to perform WordCount
 input_file = luigi.Parameter()
 output_file = luigi.Parameter()

 # Set the number of reduce tasks
 n_reduce_tasks = 1

 def requires(self):

 # Read from the output of the InputFile task
 return InputFile(self.input_file)
```
def output(self):
    
    Write the output to HDFS
    
    return luigi.contrib.hdfs.HdfsTarget(self.output_file)

def mapper(self, line):
    
    Read each line and produce a word and 1
    
    for word in line.strip().split():
        yield word, 1

def reducer(self, key, values):
    
    Read each word and produce the word and the sum of its values
    
    yield key, sum(values)

if __name__ == '__main__':
    luigi.run(main_task_cls=WordCount)

Luigi comes packaged with support for Hadoop streaming. The task implementing the MapReduce job must subclass luigi.contrib.hadoop.JobTask. The mapper() and reducer() methods can be overridden to implement the map and reduce methods of a MapReduce job.

The following command will execute the workflow, reading from /user/hduser/input.txt and storing the results in /user/hduser/wordcount on HDFS:

    $ python luigi_mapreduce.py --local-scheduler \ 
      --input-file /user/hduser/input/input.txt \ 
      --output-file /user/hduser/wordcount

**Pig in Luigi**

Luigi can be used to control the execution of Pig on a Hadoop cluster (Example 5-4).

**Example 5-4. python/Luigi/luigi_pig.py**

```python
import luigi
import luigi.contrib.pig
import luigi.contrib.hdfs
```
class InputFile(luigi.ExternalTask):
    
    A task wrapping the HDFS target
    
    input_file = luigi.Parameter()

    def output(self):
        return luigi.contrib.hdfs.HdfsTarget(self.input_file)

class WordCount(luigi.contrib.pig.PigJobTask):
    
    A task that uses Pig to perform WordCount
    
    input_file = luigi.Parameter()
    output_file = luigi.Parameter()
    script_path = luigi.Parameter(default='pig/wordcount.pig')

    def requires(self):
        
        Read from the output of the InputFile task
        
        return InputFile(self.input_file)

    def output(self):
        
        Write the output to HDFS
        
        return luigi.contrib.hdfs.HdfsTarget(self.output_file)

    def pig_parameters(self):
        
        A dictionary of parameters to pass to pig
        
        return {'INPUT': self.input_file, 'OUTPUT': self.output_file}

    def pig_options(self):
        
        A list of options to pass to pig
        
        return ['-x', 'mapreduce']

    def pig_script_path(self):
        
        The path to the pig script to run
        
        return self.script_path

if __name__ == '__main__':
    luigi.run(main_task_cls=WordCount)
Luigi comes packaged with support for Pig. The task implementing the Pig job must subclass `luigi.contrib.hadoop.PigJobTask`. The `pig_script_path()` method is used to define the path to the Pig script to run. The `pig_options()` method is used to define the options to pass to the Pig script. The `pig_parameters()` method is used to pass parameters to the Pig script.

The following command will execute the workflow, reading from `/user/hduser/input.txt` and storing the results in `/user/hduser/output` on HDFS. The `--script-path` parameter is used to define the Pig script to execute:

```
$ python luigi_pig.py --local-scheduler \
--input-file /user/hduser/input/input.txt \
--output-file /user/hduser/output \
--script-path pig/wordcount.pig
```

**Chapter Summary**

This chapter introduced Luigi as a Python workflow scheduler. It described the components of a Luigi workflow and contained examples of using Luigi to control MapReduce jobs and Pig scripts.
About the Authors

Zachary Radtka is a platform engineer at the data science firm Miner & Kasch and has extensive experience creating custom analytics that run on petabyte-scale datasets. Zach is an experienced educator, having instructed collegiate-level computer science classes, professional training classes on Big Data technologies, and public technology tutorials. He has also created production-level analytics for many industries, including US government, financial, healthcare, telecommunications, and retail.

Donald Miner is founder of the data science firm Miner & Kasch, and specializes in Hadoop enterprise architecture and applying machine learning to real-world business problems.

Donald is the author of the O'Reilly book *MapReduce Design Patterns* and the upcoming O'Reilly book *Enterprise Hadoop*. He has architected and implemented dozens of mission-critical and large-scale Hadoop systems within the US government and Fortune 500 companies. He has applied machine learning techniques to analyze data across several verticals, including financial, retail, telecommunications, health care, government intelligence, and entertainment. His PhD is from the University of Maryland, Baltimore County, where he focused on machine learning and multiagent systems. He lives in Maryland with his wife and two young sons.