Skip to Content
Learning Ray
book

Learning Ray

by Max Pumperla, Edward Oakes, Richard Liaw
February 2023
Beginner
271 pages
7h 15m
English
O'Reilly Media, Inc.
Book available

Overview

Get started with Ray, the open source distributed computing framework that simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You'll be able to use Ray to structure and run machine learning programs at scale.

Authors Max Pumperla, Edward Oakes, and Richard Liaw show you how to build machine learning applications with Ray. You'll understand how Ray fits into the current landscape of machine learning tools and discover how Ray continues to integrate ever more tightly with these tools. Distributed computation is hard, but by using Ray you'll find it easy to get started.

  • Learn how to build your first distributed applications with Ray Core
  • Conduct hyperparameter optimization with Ray Tune
  • Use the Ray RLlib library for reinforcement learning
  • Manage distributed training with the Ray Train library
  • Use Ray to perform data processing with Ray Datasets
  • Learn how work with Ray Clusters and serve models with Ray Serve
  • Build end-to-end machine learning applications with Ray AIR
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Generative Deep Learning, 2nd Edition

Generative Deep Learning, 2nd Edition

David Foster
Learning Go

Learning Go

Jon Bodner

Publisher Resources

ISBN: 9781098117214Errata PageSupplemental Content