Skip to Content
Generative Deep Learning
book

Generative Deep Learning

by David Foster
June 2019
Intermediate to advanced
327 pages
7h 36m
English
O'Reilly Media, Inc.

Overview

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models, and world models.

Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative.

  • Discover how variational autoencoders can change facial expressions in photos
  • Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation
  • Create recurrent generative models for text generation and learn how to improve the models using attention
  • Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting
  • Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning

Deep Learning

Andrew Glassner
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781492041931Errata PageSupplemental Content