1Introduction
1.1 Motivation
Shape analysis is an old topic that has been studied, for many centuries, by scientists from different boards, including philosophers, psychologists, mathematicians, biologists, and artists. However, in the past two decades, we have seen a renewed interest in the field motivated by the recent advances in 3D acquisition, modeling, and visualization technologies, and the substantial increase in the computation and storage power. Nowadays, 3D scanning devices are accessible not only to domain‐specific experts but also to the general public. Users can scan the real world at high resolution, using devices that are as cheap as video cameras, edit the 3D data using 3D modeling software, share them across the web, and host them in online repositories that are growing in size and in number. Such repositories can include millions of every day objects, cultural heritage artifacts, buildings, as well as medical, scientific, and engineering models.
The increase in the availability of 3D data comes with new challenges in terms of storage, classification, and retrieval of such data. It also brings unprecedented opportunities for solving long‐standing problems; First, the rich variability of 3D content in existing shape repositories makes it possible to directly reuse existing 3D models, in whole or in part, to construct new 3D models with rich variations. In many situations, 3D designers and content creators will no more need to scan or model a 3D object or scene ...
Get 3D Shape Analysis now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.