Preface
Since the first wireless transatlantic radio wave transmission (based on long wave) by Marconi from Cornwall, England, to Newfoundland, Canada, in 1901, wireless communications have undergone tremendous growth. Today, wireless communications systems have become an integral part of our daily life and continue to evolve in providing better quality and user experience.
One of the most important emerging wireless technologies in recent years is millimeter-wave (mm-wave) technology. Although it has been known for many decades, it is only over the past five or six years that advances in silicon process technologies and low-cost integration solutions have made mm-wave a relevant technology from a commercial perspective. As a result, this technology has attracted significant interest from academia, industry and standardization bodies. In this book, we specifically focus on 60 GHz wireless systems that enable several new applications that are not feasible at lower carrier frequencies.
60 GHz technology offers various advantages over current or existing communications systems. One of the most important is the availability of at least 5 GHz of continuous bandwidth worldwide. While this is comparable to the unlicensed bandwidth allocated for ultra-wideband (UWB) purposes, the 60 GHz bandwidth is continuous and less restricted in terms of power limits. In fact, the large bandwidth at 60 GHz band is one of the largest unlicensed bandwidths being allocated in history. This huge bandwidth ...