Chapter 89

Risk Analysis

SVEN OVE HANSSON

In the late 1960s, increased public attention to technological risks gave rise to a wave of academic activities related to risk. Scientists and scholars from a wide range of disciplines, often in new interdisciplinary combinations, started to investigate risks and risk-taking in new perspectives. Much of the focus was on chemicals and on nuclear technology, the same risk factors that public opposition had targeted. The new field was institutionalized as the discipline of “risk analysis,” with professional societies, research institutes and journals of its own. The major journal in the field, Risk Analysis, was launched in 1981. The leading professional society, the Society for Risk Analysis, sees risk analysis as “broadly defined to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk” (www.sra.org).

Risk analysis has several subdisciplines. Probabilistic risk analysis (PRA) is primarily devoted to the analysis of technological systems. One of its major tools is fault tree analysis, in which the various chains of events that may lead to an accident are identified, and their probabilities estimated. The major problem with this methodology is of course that there is no method by which we can identify all chains of events that may lead to a major accident, for instance, in a nuclear reactor or in any other complex technological system. In spite of this, the construction and analysis ...

Get A Companion to the Philosophy of Technology now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.