## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

## 8.6 Illustrative example

This example is to display the fact that the initial conditions of βNH(t) and u(t) must satisfy some conditions in order that the system is impulsive free and the fact that the proposed approach is efficient in analyzing the impulsive property of the system.

Consider the following LNHMDE:

$\begin{array}{l}\hfill \left[\begin{array}{ll}\rho +1& {\rho }^{2}\\ 0& 1\end{array}\right]\left[\begin{array}{l}{\beta }_{1\left(NH\right)}\left(t\right)\\ {\beta }_{2\left(NH\right)}\left(t\right)\end{array}\right]=\left[\begin{array}{lll}{\rho }^{2}+1& \rho & 1\\ 0& \rho +1& 1\end{array}\right]\left[\begin{array}{l}{u}_{1}\left(t\right)\\ {u}_{2}\left(t\right)\\ {u}_{3}\left(t\right)\end{array}\right],t\ge 0.\end{array}$ (8.32)

with the initial values

$\begin{array}{l}\hfill {\beta }_{NH}\left(0\right):=\left[\begin{array}{l}{\beta }_{1\left(NH\right)}\left(0\right)\\ {\beta }_{2\left(NH\right)}\left(0\right)\end{array}\right],{{\beta }_{NH}}^{\left(1\right)}\left(0\right):=\left[\begin{array}{l}{\beta }_{1\left(NH\right)}^{\left(1\right)}\left(0\right)\\ {\beta }_{2\left(NH\right)}^{\left(1\right)}\left(0\right)\end{array}\right]\end{array}$ and

$\begin{array}{l}\hfill u\left(0\right)=\left[\begin{array}{l}{u}_{1}\left(0\right)\\ {u}_{2}\left(0\right)\\ {u}_{3}\left(0\right)\end{array}\right],{u}^{\left(1\right)}\left(0\right)=\left[\begin{array}{l}{u}_{1}^{\left(1\right)}\left(0\right)\\ {u}_{2}^{\left(1\right)}\left(0\right)\\ {u}_{3}^{\left(1\right)}\left(0\right)\end{array}\right]\end{array}$

we have

$\begin{array}{l}\hfill {A}_{2}=\left[\begin{array}{ll}0& 1\\ 0& 0\end{array}\right],{A}_{1}=\left[\begin{array}{ll}1& 0\\ 0& 0\end{array}\right],{A}_{0}=\left[\begin{array}{ll}1& 0\\ 0& 1\end{array}\right],\end{array}$

$\begin{array}{l}\hfill {B}_{}\end{array}$

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required