Bibliography

  [1] Abbott, S., Understanding Analysis, Springer-Verlag, New York, 2001.

  [2] Adams, P., Smith, K., and Výborný, R., Introduction to Mathematics with Maple, World Scientific, Singapore, 2004.

  [3] Adams, P., and Výborný, R., Maple tools for the Kurzweil integral, Mathematica Bohemica 131(4) (2006), 337–346.

  [4] Ash, R.B., Doléans-Dade, CA., Probability and Measure Theory, Academic Press, San Diego, 2000.

  [5] Bachelier, L., Théorie de la spéculation, Annales Scientifiques de l’École Normale Supérieure 17 (1900), 21–86.

  [6] Bartle, R.G., Return to the Riemann integral, American Mathematical Monthly 103(8) (1980), 625–632.

  [7] Bartle, R.G., A Modern Theory of Integration, John Wiley & Sons, Hoboken, 2001.

  [8] Bartle, R.G., and Sherbert, D.R., Introduction to Real Analysis, John Wiley & Sons, Hoboken, 1999.

  [9] Baxter, M., and Rennie, A., Financial Calculus, Cambridge University Press, Cambridge, 1996.

 [10] Black, F., and Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), 637–659.

 [11] Berkovitz, L.D., and Fleming, W.H., Edward James McShane 1904–1989, The National Academy Press, Biographical Memoirs 80, Washington, 2001. www.nap.edu/readingroom.php?book=biomems&page=emcshane.html (accessed 21 December 2011).

 [12] Bongiorno, B., Un nuovo integrale per il problema delle primitive, Le Matematiche (Catania) 51 (1996), 299–313.

 [13] Bongiorno, B., Di Piazza, L., and Musial, K., A characterization of the ...

Get A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.