## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

## Book Description

For the engineering and scientific professional, A Physicist’s Guide to Mathematica, Second Edition provides an updated reference guide based on the 2007 new 6.0 release, providing an organized and integrated desk reference with step-by-step instructions for the most commonly used features of the software as it applies to research in physics.

For professors teaching physics and other science courses using the Mathematica software, A Physicist’s Guide to Mathematica, Second Edition is the only fully compatible (new software release) Mathematica text that engages students by providing complete topic coverage, new applications, exercises and examples that enable the user to solve a wide range of physics problems.

• Does not require prior knowledge of Mathematica or computer programming
• Can be used as either a primary or supplemental text for upper-division physics majors
• Provides over 450 end-of-section exercises and end-of-chapter problems
• Serves as a reference suitable for chemists, physical scientists, and engineers
• Compatible with Mathematica Version 6, a recent major release

2. Preface to the Second Edition
3. Preface to the First Edition
4. I. Mathematica with Physics
1. 1. The First Encounter
1. 1.1. The First Ten Minutes
2. 1.2. A Touch of Physics
4. 1.4. Warning Messages
5. 1.5. Packages
6. 1.6. Notebook Interfaces
7. 1.7. Problems
2. 2. Interactive Use of Mathematica
1. 2.1. Numerical Capabilities
2. 2.2. Symbolic Capabilities
3. 2.3. Graphical Capabilities
1. 2.3.1. Two-Dimensional Graphics
2. 2.3.2. Three-Dimensional Graphics
3. 2.3.3. Interactive Manipulation of Graphics
4. 2.3.4. Animation
5. 2.3.5. Exercise
4. 2.4. Lists
1. 2.4.1. Defining Lists
2. 2.4.2. Generating and Displaying Lists
3. 2.4.3. Counting List Elements
4. 2.4.4. Obtaining List and Sublist Elements
5. 2.4.5. Changing List and Sublist Elements
6. 2.4.6. Rearranging Lists
7. 2.4.7. Restructuring Lists
8. 2.4.8. Combining Lists
9. 2.4.9. Operating on Lists
10. 2.4.10. Using Lists in Computations
11. 2.4.11. Analyzing Data
12. 2.4.12. Exercises
5. 2.5. Special Characters, Two-Dimensional Forms, and Format Types
1. 2.5.1. Special Characters
1. 2.5.1.1. Ways to Enter Special Characters
2. 2.5.1.2. Letters and Letterlike Forms
3. 2.5.1.3. Operators
4. 2.5.1.4. Structural Elements and Spacing Characters
5. 2.5.1.5. Similar-Looking Characters
2. 2.5.2. Two-Dimensional Forms
1. 2.5.2.1. Ways to Enter Two-Dimensional Forms
2. 2.5.2.2. Some Two-Dimensional Forms with Built-in Meaning
3. 2.5.2.3. Two-Dimensional Notation in Physics
3. 2.5.3. Input and Output Forms
4. 2.5.4. Exercises
6. 2.6. Problems
3. 3. Programming in Mathematica
1. 3.1. Expressions
1. 3.1.1. Atoms
2. 3.1.2. Internal Representation
3. 3.1.3. Manipulation
4. 3.1.4. Exercises
2. 3.2. Patterns
1. 3.2.1. Blanks
2. 3.2.2. Naming Patterns
3. 3.2.3. Restricting Patterns
4. 3.2.4. Structural Equivalence
5. 3.2.5. Attributes
6. 3.2.6. Defaults
7. 3.2.7. Alternative or Repeated Patterns
8. 3.2.8. Multiple Blanks
9. 3.2.9. Exercises
3. 3.3. Functions
4. 3.4. Procedures
1. 3.4.1. Local Symbols
2. 3.4.2. Conditionals
3. 3.4.3. Loops
4. 3.4.4. Named Optional Arguments
5. 3.4.5. An Example: Motion of a Particle in One Dimension
6. 3.4.6. Exercises
5. 3.5. Graphics
1. 3.5.1. Graphics Objects
2. 3.5.2. Two-Dimensional Graphics
3. 3.5.3. Three-Dimensional Graphics
4. 3.5.4. Exercises
6. 3.6. Programming Styles
7. 3.7. Packages
1. 3.7.1. Contexts
2. 3.7.2. Context Manipulation
3. 3.7.3. A Sample Package
4. 3.7.4. Template for Packages
5. 3.7.5. Exercises
5. II. Physics with Mathematica
1. 4. Mechanics
1. 4.1. Falling Bodies
2. 4.2. Projectile Motion
3. 4.3. The Pendulum
1. 4.3.1. The Problem
2. 4.3.2. Physics of the Problem
3. 4.3.3. Solution with Mathematica
4. 4.4. The Spherical Pendulum
1. 4.4.1. The Problem
2. 4.4.2. Physics of the Problem
3. 4.4.3. Solution with Mathematica
5. 4.5. Problems
2. 5. Electricity and Magnetism
1. 5.1. Electric Field Lines and Equipotentials
1. 5.1.1. The Problem
2. 5.1.2. Physics of the Problem
3. 5.1.3. Solution with Mathematica
2. 5.2. Laplace’s Equation
1. 5.2.1. The Problem
2. 5.2.2. Physics of the Problem
3. 5.2.3. Solution with Mathematica
3. 5.3. Charged Particle in Crossed Electric and Magnetic Fields
4. 5.4. Problems
3. 6. Quantum Physics
1. 6.1.1. The Problem
2. 6.1.2. Physics of the Problem
3. 6.1.3. Solution with Mathematica
2. 6.2. Wave Packets
3. 6.3. Particle in a One-Dimensional Box
1. 6.3.1. The Problem
2. 6.3.2. Physics of the Problem
3. 6.3.3. Solution with Mathematica
4. 6.4. The Square Well Potential
1. 6.4.1. The Problem
2. 6.4.2. Physics of the Problem
3. 6.4.3. Solution with Mathematica
5. 6.5. Angular Momentum
1. 6.5.1. The Problem
2. 6.5.2. Physics of the Problem
3. 6.5.3. Solution with Mathematica
6. 6.6. The Kronig–Penney Model
7. 6.7. Problems
6. A. The Last Ten Minutes
7. B. Operator Input Forms
8. C. Solutions to Exercises
9. D. Solutions to Problems
10. References