APPENDIX B

SAS MACRO FOR ADAPTIVE TESTS

/* Notes:

  1. The variables that are used in the macro call are:

    images

    images

  2. No missing values are allowed in the dependent variables, independent variables, or blocking variables.
  3. If variables are formatted, then the formats will need to be placed before the macro.
  4. The number of observations must not exceed 10000.
  5. The number of dependent variables must not exceed 20.
 */ options nocenter linesize=80 nonotes ; %macro adaptall(dataset=, y=, nvars=l, xr=, classr=, xa=, classa=, blkvars=, ici=0, iestimat=0, iequalwt=0, seedl=1492, seed2=314, seed3=2718, nperm=2000, short=0); data _null_; /* The code in this data step is used to obtain a list of the variables in the keep list by deleting the interaction (*) characters. */ cxr=symget(‘xr’); listxr = translate(cxr,‘ ‘,’*| ()’); call symput(‘mlistxr’,listxr); cxa=symget(‘ xa’ ) ; listxa = translate(cxa,‘ ‘,’*1 O’); call symput(‘mlistxa’, listxa) ; data awlsdata(keep= &y &mlistxr &mlistxa); retain n 0; set &dataset; n=n+l; call symput(‘nobs’,left (n)); output awlsdata; proc glm data=awlsdata %if &short ne 0 %then noprint; ; classes &classr &classa; model &y=&xr &xa ; %if &nvars ne 1 %then manova h=&xa / printe printh;; title2 ‘ traditional analysis -- no adaptation’; /* Now begin adaptive analysis */ proc glm ...

Get Adaptive Tests of Significance Using Permutations of Residuals with R and SAS now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.